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NON-CLASSICAL PROBLEMS AND METHODS IN PERTURBATION THEORY!

A. N. Panchenkov

ABSTRACT. The author considers the problem of ''compiete'
approximation of a boundary value problem in some region of
the Euclidian of a new boundary value problem. The criteria
for a uniform approximation are satisfied by allowing freedom
in the selection of the mapping of the Euclidian space into
the new space as well as in the choice of the new differential
operator, the boundaries of the region and the boundary
conditions. The complete approximation in the new space
yields a linear problem which leads to satisfactory results
in physical space for sufficiently large perturbation
parameters. The Poincare-Lighthill-Go method is an example
of a procedure based on the idea of complete approximation.
Problems in hydrodynamics which may be solved by this method
are examined.

The most universally used method for solving boundary value problems in /9%
mathematical physics with small perturbations is the method of constructing
a formal solution as a series in positive hours of a small parameter of the
problem. The first approximation of this method which yields a solution with
an accuracy to terms of the first negative order of magnitude ordinarily corre-
sponds to some linear problem, and an iteration process of the formal algorithm
for a method in perturbation theory gives results of higher approximations.

In evaluating the advantages of methods in perturbation theory, two prob-
lems must be studied: 1) the actual possibility of finding the results of
higher approximations; 2) the theoretical possibility of finding the results
of higher approximations.

A series of positive powers of a small parameter gives a formal solution
for the problem, but there is a sharp increase in the difficulty of constructing
the inverse operator with a transition from the first to higher approximations.
For this reason only first approximation theories are completely worked out in
most cases (for instance the theory of small amplitude waves in a heavy liquid).

Cases are described in the literature where formal solutions of higher
approximation have not improved on the accuracy of the first approximation. In
this case we are running up against problems in which it was fundamentally
impossible to improve on the results of the first approximation by an ordinary
method in perturbation theory. Let us formulate conditions which when satisfied

lReport given at the World Congress of Mathematicians in Moscow in 1966.

*Numbers in margin indicate pagination in foreign text.




will open up the fundamental possibility of realizing a formal algorithm of a
method of perturbation theory, and examine the problem of "complete' approxi-
mation of a boundary value problem by a new boundary value problem.

Let © and QO be regions of Euclidian space R3 whose boundaries belong to /10

the class ZZ:

B C l:‘,; BO 6 12-

Let us designate by class Zm regions bounded by a finite number of simple

closed curves intersection in pairs [1].

Each curve which makes up part of the boundary of region Qi has a finite
length, and the function X; = xi(s) which determines this curve has continuous
derivatives to order m inclusive (s is the arc length reckoned from a fixed

point on the curve).

Let us consider two sets in the space C2(Qi):

® ¢ C Q)

@, ¢ C*(0y).

The sets o, satisfy differential equations of the second order

TH=20 g€

ToMy == g e,
and the boundary conditions

Kb=0 g€B;
K®, =0  gCBy

on the boundaries Bi € 22.

Let P be the mapping Q > Q 1° and B .. € ZZ be the boundary of the region

0 01

251 - Let us introduce in spaces CZ(QO n QOl)and R3 the metrics

0, (PODY;, 0 (By: 5y = 1‘/‘5" () — x5 X €B; X, € By, =129,



-

where the points g(xi) and g(x;) are the intersections of surfaces B, and B01

respectively by the normal to the surface BOl‘
Let us assume that the function %5 gives a uniform approximation in the

region Q

0°
PO ==y 4 0 (sY) gEQ,
where
y>0 e< 1;
1D fj ~ 1.
If the conditions /11

o, (PD; @) =:0(%) «w>0
0 By 1 D,)=0(") B0,

are satisfied which are necessary for finding solutions of the problem by
perturbations methods, the question of the approximation with the greatest
exponent y becomes important.

In classical perturbation theory, the mapping P = 1 and linear theories
as a first approximation in methods of perturbation theory give an approximation
with an exponent y = 1 in most cases.

Complete approximation means that with free selection of the mapping P,
an attempt may be made to select the mapping P and the operators Ty and Ky in

such a way that they guarantee the greatest exponent vy.

If the perturbation algorithm increases both exponents o and 8, there will
also be an increase in exponent vy, whereas if the algorithm increases only one
exponent, the results of higher approximations will yield the same accuracy as
the first approximation. In this regard, it is necessary to construct an
algorithm of perturbation theory which increases exponents o and B; such an
algorithm may be constructed by introducing the mapping P Z 1. Closest to the
idea of complete approximation is the Poincare-Lighthill-Go method [8].

Let us examine three problems of aerohydrodynamics in which the method of
complete approximation has been used to find some interesting results in the
first approximation [5, 6].



Non-1linear Theory of a Supporting Surface or Arbitrary Extension

Linear theories have been developed in considerable detail in this problem,
but there are no strict solutions of the non-linear problem.

Let us assume that the flow to be considered is Baltrami flow. Since it
is clear from the physical essence of the problem to be considered that the
greatest effect will be from the presence of the downwash angle at infinity
behind the wing and the deviation of the vortex sheet from the plane 0XZ, let
us examine the mapping with deformation of the coordinate Z alone.

To satisfy the second condition let us take the relationship for the
coordinate in the form

£y
Z, =7 - § u, (T, 4, 1 Z)dv.
0
For acceleration potential, the boundary value problem is formulated in
the following way:

AC == 0 gC 9

Xy
} Y G 3
il re gess
&

>0
© 1) /12

(‘)_4—-'--0‘_'_:0 gé[l

Here L1 is the trailing edge of the supporting surface and the last

condition is the condition of the Zhukovskiy-Chaplygin postulate.

Boundary value problem (1) in the new space is equivalent to the linear
boundary value problem for the supporting surface [7]. By solving problem (1)
by ordinary methods in space R3, we get a two dimensional integral equation

¥ 0

-
@, = ~;¢-g ; AL
g ayl(ﬂ-ﬂ)“-i-('f—(—“—)-)

sl 1 om Jf.(.;)_({'j.'ﬂ?.-*:(Af:_3 SR s g &
=0V W0 - 9P PG

where A(n) is the relative longitudinal extension in cross-section n.



To approximate a wing of small extension we have a one-dimensional
integral equation

1 Dy (y — M)

Phv I AT (A
(U~HV+('fﬂ
—4

dy = sina geS,.

whose solution gives the value of the 1ift factor for a wing of small extension

where

The function wZ is computed as

P 0,5%;ﬁ~(k25514‘CL06251 - 0\016915»%(X0?37r} -
o 3 b d

+ 00188617 40,0521,

w2

here /13

] [BoN S 5 30
b E/// (?\5) b gk; o ©000

ey
where a = 1 for a wing with a rounded edge; a = 2 for a wing with a sharp
trailing edge.

The results of this solution agree satisfactorily with experimental data
on wings of small extension (Fig. 1).

Supporting Surface in a Near Sonic Gas Flow

The problem of motion of a body in a subsonic gas flow [6] was considered
as a problem in which the operator T varies.

The motion of the fluid is described by the function ¢ €C2(Q) which satis-
fies the nonlinear equation of gas dynamics [2]:

(1 —M2—eM7(y -+ 1) ¢l o, - Py 4+ @,, -+ 0(e2) == 0, where I Id) l ’ ~ 1.



The mapping P~ ! is considered with components:

X == ——E— —}- F(E: le z:‘);
P =

y = T],

z={

F,n et  [[F|ve.

3
In the new space Rl in the first approximation we get A¢ = O, géEQO, and

for the function F we get the equation

(1 — MY K" — 1@, — e2K°F, (1 — M) gy -

— elCFy, (1= MYy g, — oM (y 4 Do K H0 ) =0 g€Q

If we take the function F in the form

F=B—t) ge

we have for the constants XK and B

Fed CM (v 4 1) - K2 (1 — M7 4 1=- 0

B= .l
30 A

To define the constant ¢ we assume the condition
Fe(-—1, 0)=:0.
Summing up these results we find that the problem of gas dynamics is formulated

in space Ri for the Laplace equation, and the coordinate transformation § - x

takes the form

e LMD e
X = T €- 31 - AE) [ - :~~P§_( £yl

For small perturbations this expression becomes a well-known transformation
which leads to the Prandtl-Glauert dimensionless number.

We shall not dwell on the methods for solving the corresponding boundary
value problems, but shall merely give a number of final results which show the

effectiveness of the method.

/14



— - According to the theory

& T - I 4 - -
/// under consideration, the
06} - - ey pressure coefficient is
28 K
TUUTekME(yWYy T o T T
o4l ~ - 1 3(12";;2)‘)—‘ [q’g - q)g (—“ k» O)]
Special cases:
gy - o 1. For a symmetric ellip- /15
. tical foil in a plane parallel
<o T flow, we get the dimensionless
P
P equation
T
1] T e el e
‘ 0,1 02 93 « \
RP g APy - 1y = K20 - - 23 - 12 0,
Figure 1. Comparison of Theoretical and
Experimental Data on Wings of Small Exten-
sion (the broken line is computed from linear where § 1s the relative thick-
theory): 1, » =1; 2, » = 0.5, ness of the wing.
It follows from this equation that in the region
ﬁ 2 o
7 M (1 — A1y
the Prandtl-Glauert number applies, while in the region
o 1. 2
g/u e (1 e A9
we get the near sonic dimensionless parameter
A
K= e 7y 17
from the equation.
2. For a thin wing in plane flow, we find that the general dimensionless /16

number is the Prandtl-Glauert number, while the pressure coefficient should be
calculated from the formula

C Cﬁo
B L T My T, N
/5 ity voll R _ P
L Uy T )

to account for non-linear effects, where C

incompressible liquid. p0

is the pressure coefficient in an



A comparison of the results of computation by the formula with known
solutions in gas dynamics [3] shows that they agree satisfactorily even for
perturbations of the order of 1 (Fig. 2).

080 -

L VA Y Y N 05

Figure 2. Comparison of Various Methods for Computing
the Pressure Coefficient from an incompressible
Liquid to a Gas:

1, Stack experiment (profiie NACALL12, upper surface

o = 0°15'); 2, by the Prandti-Glauert formula;

3, by the Karman-Chiang formula; 4,5, by G. A.

Dombrovskiy's formula; 6, by formula (32).

The problem of a supporting surface in a 3-dimensional subsonic flow was
also considered, and a nonlinear 2-dimensional integral equation was found as
well as final results for the pressure field on the wing surface.

The Problem of Waved Finite Amplitude

This problem on the surface of a heavy liquid is formulated as follows
(Fig. 3).
Mp=0  geQh
o, — 9, -+ (ve) =0
O Mox Mo = @ geL,
ve —> 0

X — CO.
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Figure 3. Coordinate System for Solving the
Problem of Waves on the Surface of a Liquid.

Let us assume that
0 CCT(L) el (@) =9

and

B llesfim, |4 In, IF << 3.

Let us limit ourselves to the approximation

F@ - Fogy ba o) -- 0 gcl;
F@eC (@Y Fo@cC' () IFml==e pCl.

Then the nonlinear problem for moderate perturbations takes the form

A(D'—:O gEQ’
é 2 J - O(t(’_o /GL
%f“W%“mWW—“a%+ 7)== g )
Ag o 0
x> -0, e
Let us introduce a new Euclidian space R%- For the sake of simplicity we

again consider a space with a single distorted coordinate

Yoo o PGy ye=1



In space RZ, the problem takes the following form:

Ap=10 gEQy;
P 09, =0 g€l

with the mapping & - X;
x=§—q (.

The mapping £ - x is taken from the condition that the first approximation
in space R% should correspond to the classical theory of low amplitude waves.

The shape of the profile in space Ri is determined from the formula

1
1]b = e (}“) g E L

For the space RZ, we have the parametric representation:

x=e—q( 0)

Coo )
Ny = —~-—-9. (§, O).

M,

In the simplest case of waves with a potential in space R%

@ == Ac"" sin wE,

while in the space R? /18

X ==t —Asine™

(2)

n, == Acos e &

Formulas (2) describe trochoidal Gerstner waves. Thus we find that the

first approximation in space R% gives the known theory of trochoidal Gerstner

waves [4].

Only the simplest example from wave theory has been examined, but the given
method may be used for studying an extremely broad class of nonlinear problems
which are not likely to be solvable by conventional methods.

Let us point out in conclusion that the methods of perturbation theory
which are based on complete approximation give first-approximation nonlinear

10



solutions which are suitable for fairly large perturbations.

There is a large class of problems in mathematical physics which may be
studied by the given method.
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A SUPPORTING SURFACE IN AN UNSTEADY FLUID FLOW
(Article 1)

A. N. Panchenkov

ABSTRACT. The author presents a general method of solving
boundary value problems for small hydrodynamic perturbations
of a supporting surface in an unsteady flow. The method is
based on representation of the general solution in the form
of three components. The first two components give the
regular solutions which describe inertial and vortex motions
respectively, while the third gives the singular solution.
The problem of oscillation of a wing in an infinite fluid

is given by way of example.

The theory of a wing in an unsteady flow has been quite extensively /19
developed [1-4, 7, 8]. Work which has recently been done in high velocity
hydrodynamics and hydrobionics shows that the theory of a wing in an unsteady
flow demands extensive investigations to develop general methods and new
mathematical models which could be used for solving a broad class of problems
on a supporting surface (rigid and elastic) in a bounded flow, problems on
unsteady motions of a wing with finite perturbations, developing a theory for
the thrust of a flapping wing, etc.

The introduction of high speed water vehicles has been favorable to the
development of a theory of unsteady motion of a wing in a bounded flow (close
to a free surface, close to a solid screen), but it has been found that the
available data in aerodynamics are insufficient for such generalizations. Even
in the case of plane flow with a closed solution for the Birnbaum equation for
a wing close to a deflector, new methods must be worked out for approximate
solution of the more general equation.

The method of acceleration potential may be used for solving the problem
of a supporting surface in an unsteady flow. This method leads to 2-dimensional
singular equations which are extremely difficult to solve for a supporting
surface of arbritrary shape and arbritrary conditions. :

Works |1-4] which take up this theory deal chiefly with the problem of var-

ious physical assumptions and approximations which reduce the 2-dimensional

equations to l-dimensional equations. However, as is pointed out by R. L,
Bissplinghoff, H. Ashley and R. L. Halfmann [1], the problem has been handled /20
in about 20 different ways and no 2 treatments give completely identical results.

Beginning with this paper, we intend to publish a series of articles
dealing with the general theory of a wing in an unsteady flow and with its

12



applications in high velocity hydrodynamics and hydrobionics.

The approximate original plan for the
studies is as follows:

1) formal apparatus of the theory of
small perturbations and general results;

2) plane problems in the theory of a wing
in an unsteady bounded flow;

3) general solutions in 3-dimensional
problems;

4) l-dimensional approximations in the
theory of a wing of finite span;

5) numerical results and applications;

6) methods of '"complete' approximation and the theory of moderate pertur-
bations;

7) applications of the theory of small and moderate perturbations in
hydrobionics (the theory of flapping flight, thrust of a vibrating wing, etc.).

Works [4-6] contain the basic results necessary for realizing this program

the initial data needed for understanding the material which has been published.

The mathematical apparatus of the theory of small perturbations is developed
in this paper.

The analysis is based on the coordinate system shown in the figure.

Let us introduce the following basic notation: 6, acceleration potential;

¢, velocity potential; k, Strouhal number; N, the mapping 6 - ¢; NO’ the

mapping 6 ~ ¢ for steady-state flow,.
Let us assume that in addition to its fundamental translational motion
with velocity Vgs the wing undergoes harmonic oscillations with frequency w.

We then have for the hydrodynamic potential and their derivatives

0z, (g, ) = 0%, (g) ™™
ey

it

¥y, (g, 1) =~ 9} (g)e

We have used the index n to designate the derivative of n-th order of the
functions 6 and ¢ with respect to the coordinate X - Expressions (1) may be

used in formulating the problem for potentials T(g); ¢(g).

13
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In the following discussion we shall omit the lines above the notation
for the amplitude functions and will consider dimensionless values with a /21
velocity of the oncoming flow equal to unity.

The relationship between potentials 6 and ¢ is

0 o= dlep -} .

The boundary value problem for a supporting surface in an unsteady flow is
formulated as follows

AO=. 0 g€ (2)
0,=F(g gcsn (3)
0->0;
X > - oo
PO=Fi(g) gCs
4

0_}_ - O___ == 0 g E L.

Here Q is the region occupied by the fluid; sp is the projection of the
supporting surface on the surface of the undisturbed flow; Sy is the bounding

surface; L is the trailing edge of surface sp

The linear operator P determines the structure of the boundary conditions
on the bounding surface. For example:

for a free surface

for a solid deflector

d
P -

The solution of problem (2) gives an integral operator Ay with domain in
the space Ll(sp), range in the space ¢?(Q), and the properties

AAy = 0 ge

=5 1
Av,=Av+ 5y  gEs,S

14



Am_:ﬁy—n%v g€s, s

A?'Y_‘_ == Az/Y-. == ‘E.Y g ESD'

The additional properties of operator Ay are defined by condition (4).

Since

A'Y+ — A\)~ == - v = O+ - O_. g G sp,

the norm of the function y(g) in space~L1(sp) is proportional to the relative /22
lift:

IVl = [ v () ds.

The integral equation for the problem takes the form

Ay—F(g gCs ()

L Op.

Examples of construction of an integral operator for equation (5) show [4]
that the kernel of the integral operator has a singularity of order o = 2 and
the intetrals do not exist in the general case, but may exist only for

Y(g)ecl(sp)-

Since N1 is a differential operator and formula (5) gives a solution only
in the space cl(sp), we may expect that there is a singular solution which is

lost in the mapping ¢ - 6. The singular solution should be determined from the
equation

NAy=-Ti(@  ge€sy (6)
The proper selection of the integral operators from expression (6) gives
all the known equations in the theory of a wing in an unsteady flow [1, 3, 4].

The operators A(y) in the general case may be written in the following form
form:

for 2-dimensional flow 1
1 d o
Ay =57 Y YO HKE gdt ge

15



for 3-dimensional flow

1 0 3 ,
Av=;zx'5 Y g Kip, ) ds  gEeQ

Sp

For a wing in an unbounded liquid, the kernels K% take the form

2 I
](1 == ]n —[{—1 ’

b2 1
K% = i~

R;

. . . . o n . .
where Rn is the distance in Euclidian space R (the upper index associated

with the kernel shows the dimensionality of the space).

Further development of the theory is along the lines of working out
analytical or numerical methods for solution of equation (6).

With respect to physical essence, the function y may be written as /23

Yy v v (o) res,

where the term Yl(p) describes the vortex components of the solution, and yz(p)

describes the inertial components.

vk <k 7

These estimates follow from the already known results of wing theory [3].
If k ~ 1, we get

v el e vl A

and numerical methods may then yield satisfactory results.

When k >> 1, we have

I,

By bl landityjir = 1y I

and numerical methods may then be used for a rough determination of the vortex
components which are of greatest interest in the theory of a wing in an unsteady
flow.

16



This fact and the possibility of finding effective analytical solutions
determine the importance of the problem of representing the solution in the
form of individual components which have either different physical meanings or
different norms in the corresponding metric spaces.

Several methods of representing the solution are known in the literature.

In A. I. Nekrasov's monograph [3], the solution is broken down according
to physical meaning:

1) quasistationary solution;
2) inertial component of the solution;
3) solution describing the effect of the vortex trail.

In the most recent papers, the solution is broken down according to
formal mathematical meaning [1]:

1) regular solution (cl(sp));
2) singular solution.
These two methods have certain disadvantages: in the first case the

quasistationary solution and the solution which describes the effect of the
vortex trail do not belong to the space cl(sp), while in the second case, the

regular solution has components with different norms.

In the formal algorithm which we have developed, 6 is represented in the
form of three components:

0 .= Gl -1 Cz - 03, (8)

where 6. is the regular solution associated with a discontinuity in tangential

1
velocities when a line in Sp is crossed; 62 is the regular solution which /24
describes inertial motions; 6, is the singular solution of the problem.

3

If the condition

@, == () ges,

is observed in velocity potential space, then

F(g)y == inF (@) — le (@) g (:'SD (9)

17



and formula (5) resolves into two independent equations:

A—ZYI = le (g) g 6 Sp;
A, = i1, (g) ges,

or
NOlZz'Yl =TI 4c geEs,; (10)
NoAy, = -—ikF (@  g€s; (11)
Nm T 57 at
A necessary condition for the existence of equation (11) is yzegcl(sp).
Assuming that the functions belong to space cl(s_), we shall consider these
functions finite. P
Expressions (10) and (11) imply the important relationship
, . (4]
‘Y? (g) = lkY] ({,’) '}‘ a) Ygz (f{) g GSD; (12)
NOA:Yé,E = ﬂ:c g E Sp.' (13)

The constant c is determined from the condition of solvability in the space
cl(sp) which is clearly formulated for 2-dimensional problems, and in the

theory of long extension, the value of this constant used in the 2-dimensional
problem may be assumed (for 3-dimensional problems, the constant c will be
parametrically dependent on the coordinate y). For instance, for the equation

Lyy=F (s) e s@€i—1; - 1);

(x — 5)

+
Loy =l | 29 as

is a singular operator with Cauchy kernel.

The constant ¢ is determined from the condition /25

Com b {TIOL g
}/" 1.2

18
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and an inverse operator Lal then exists in this class.

The following may be shown in determing the singular solution:

NAy,, = NuAy gEs, (14)
If
X
Vip €CH(s) 1 vy (¥, p) = — ik j v, (v, ) d; {x, y} €s,
-l
then the expression
NAy, = LC g€s,,
(15)

L == —-/— NAD,

follows from equations (6) and (14) for the singular solution, where I is the
identity operator;

Alozzpl\’éz = '\’22'

The basic characteristics and advantages of the formal algorithm which has
been developed are now apparent. Functions Yq and Y, are determined from

equation (10) and (11), which coincide in form with the equation of stationary
theory, while the singular solution Yz is determined from equation (15) which

contains only the constant ¢ in the right-hand member.

If it is assumed that the Zhukovskiy-Chaplygin postulate is valid through-
out the entire period of motion, a singularity will exist only on the leading
edge of the wing.

The form of the singular solution is known for 2-dimensional flow

o
(YAx)==lll// l:ti) , and in this case we immediately get the value of the

constant a from expression (15).
To illustrate the method, let us briefly solve the plane problem of

oscillation of a wing in an unbounded fluid. For this form of the operator,
equations (10), (11) and (13) take the form
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LO'YI (s) == Fl (x) - Cl
Ly, = — kP, x G 1; + 1] (16)

C
Ly, = the

Introducing the inverse operator Lal power, we have /26
. Qikex . 2 D i . .
YQZ (’L) Feom '}/1-;_‘ .YI'“)- e uJL ‘]/,»1»»-:'{2: X C{—- - I, '[L 1}
(17)

ER
2 v F ! ,
'Yl (X) == —:L’ 1/ 1 - X S ~:"/;1. 1“_"(“;___")) d.‘c X G [“ 11 -7 11
~

If the singularity at the leading edge of the wing alone is considered
in the singular solution, the general representation for the function y(s) may
be written as

Y (S) =y 'E/-I ‘:_'_. Z‘ 'l‘ 21:‘1\01/']—-: ;2‘ —\:— :;?;— D S"’i]l}-h_ )‘* dz -:"
-1

1
(18)
- Sy - - i,’:j‘ v, () dx xC[—1; + 1
Direct inversion of the second equation in system (16) gives
o
. B 2 i V- P ), i .
MUJM”“ﬁﬁhiJ;S"‘@;¢;'*H xEl-—1; - 1
(19)

41 )
ik o) 2 1 1 — 2 1/ 2o
i S'IH[J —px) R Y T = Y TIIY Fiy i

N B B - T - )
v () 2 S Ve oyt VSR

x € —1; 4 1],

The constant D may be determined from the condition of equality of the
norms of the space Ll(sp) with respect to the two solutions

|

$ |
fvmd l v
]

Ny, ()] == —-ik

it

“+1
ot F.x
=ik \ =0 ax
Then D=i ) VT
—1
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The constant a is determined from equation (15):

” .
(1 - l_.__ N >C——~ I_C___ Ny
in
== — 93 . - —

N, = -—-r—rtke’h’S E/lli-z S (t—5y dsdv

.'.l
/1_
Nz':S 1(,, - —ds Lz}m”’”S V1—-s 5 -

Copm= mm e

de’L

The function Ni may be expressed in terms of Hankel functions:

Then we get

Ny il L ) - il )™ l
Ny= BN, e ik 117 (™

N,=F- ;nfmd%

a = 2¢ () {c -+ (2—] = Ca,

where c(k) is Theodorsen's function [3].

In conclusion,
space Ll(s) which,

relative lift:

Expression (23) implies estimates (7) which were assumed a priori.

as has already been pointed out,

/27

(20)

(21)

(22)

let us give an expression for the norm of the function y in

41

=

41
Y1 =P = =21t | Vi Rx v f V1 Fyd,

is proportional to the

(23)

Expres-

sion (23) is a known result from aerodynamics [3] on the lift of an oscillating
wing in a 2-dimensional flow.
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PROBLEMS OF LONG WAVES WHICH ARISE FROM INITIAL PERTURBA-
TION IN A VISCOUS ROTATING LIQUID

L. V. Cherkesov

ABSTRACT: The author considers the problem of long waves
which arise on the surface of a viscous rotating liquid
under the effect of an initial elevation in the free
surface.

Problems on long waves which arise from initial perturbations in an /29
ideal rotating liquid are considered in [2, 5 and 10] and in a viscous liquid
without regard to rotation--in [3, 4, 6 and 9].

In this paper we investigate two-dimensional and three-dimensional
problems of long waves which arise on the free surface of a viscous rotating
liquid from an arbitrary initial elevation. The analogous problem without
regard to rotation is solved in [8].

Let us consider an infinite layer of a viscous liquid bounded from below
by a horizontal floor, and from above by the free surface. The liquid is at
rest at the initial instant of time, and its free surface, which is displaced
from the horizontal position, has the form

C(x, 1, 0) - of (v) (a-= const) (1)

It is necessary to determine the form of the free surface at any instant
of time t > 0, assuming that the waves which arise on the surface are long and
that they move slowly, and taking the Coriolis force into account. Under these
conditions, with initial and boundary conditions

u=v=0, {=qaf(x)when {=0;
(2)

U==0.=0when 2= —Hh, 4, =u0v,=0uwhen z = (

the system of equations of motion is as follows [7]:
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o . a3 du | & 2
e 200 = — &y Vs o Q00 == v il
’ a
o (o 4
o T S 5y 02 (3) /30

—h

Taking for the solution of system (3) the Laplace transform with respect
to time t and the Fourier transform with respect to the variable x and satis-
fying conditions (2), we get for the form of the free surface:

s-}-ico
. a «®
C(x, 1) e ; -
v, ) 25i o

SO

S A

o ¢ (o) e do;
(4)

N 1 CO; ____1_ RPUCEFI
@ () == szﬁ'g D) AUn,a,s)e dx,

1 T ——imrd . (5)
HW%=VQ£SH@€ x;

1 et - 200 Vo a0
g A? gl 1oL e - S| TR o
A, a,¢)==a ]m»1m[1 %8<Viymﬁh . ;

, o i {h Vo -- 20
'1_ T .- La= - T" T -
Vo -— 2en €

llere x, t and w are dimensionless quantities equal respectively to

xoc_l, ot and mq—l, where o = 1 sec_l, ¢c=+Vgh , €= vl/zol/zh_l.

Formula (4) gives a representation for the expression of the form of
the free surface for an arbitrary initial elevation which may be represented
by a Fourier integral, and for arbitrary values of the parameter e. Since
f(m) > 0 when [ml > o, integral {(5) will converge, and since ad¢(a) = O when
|a| > =, integral (4) will also converge.

Since the parameter e is small for real liquids over a wide range of a
variation in h, it is of interest to analyze expression (4) further for small
values of this parameter.

Expanding the integrand in equation (5) in a series with respect to
parameter e, limiting ourselves to the first and third terms of the series,
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and writing the residual term in Lagrangian form, we get expression (4) in

the form

&= G + el -F e - %5
{0 2y 4o
a o w* ot .
By = g7 ‘"dE¥F“'@h(G)c du;

S~mfcr

O T XY x| Ve vii Vo Sl
(k==0,1,2);
1 T e
R - n)w (i, a, Geye' dnt,
Qo= sy | 0% G 0 00
aln €)oo AT AT — e AT

Agvsa® -l A fom?

(the prime designates differentiation with respect to €).

Integrals (7) converge, but further computation

1 Y 20i e PR
[awdm~k “t Hﬂ Sﬂmf

@y

(6)

(7

is possible only for

specific values of the function f(m). Let us now calculate the integrals Ty

for an initial elevation of the form

ny
acos-go | x| << b

G(x, 1. 0) <=
0 1x| > b.

In this case

Fm) = ;} ;/,[ cos mb ’

2 ke p?

(8)

where'b and k are dimensionless quantities equal respectively to bcc_l,
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1/2mb° L.

Substituting expression (8) in equation (6) and subsequently computing
the integrals ¢k (o) and then z;k by the method of contour integration, we find

expressions for the elevated liquid

) x>ct--b
E(x, 1) =0,
2) cf—b<lx<ct-}-b
G(x, t) = 1/2a (n, — e, —&,) - R,

Where Wy = g~* {cos v -k 4d"% exp [-—- 2—9—%:9]} — 2bcK, (x — b);

nlz,%sm(yn_g>4;A¢cm(y-~%)-Fsﬁﬂﬁﬁxlumwm;

- e b2 -, X—b
’thmEUnmb)+j%Br§qs{dhKiw~)«—%q‘tigw»«

20 9 x~— x—b ~
— Z’ ¢ J%} 22 ~-~] siny b (/1_)_ — - /Lf) cos YJ'

? W2ge Yy o)
g = T

( 2036 K V= Taeiz evp (o Iy ch (et VY R S ae,r) ]

Co(x) = 9J © SR e TRt B Sr e R e ST Rl el

I, () = 2Jm je ( E -0 90N Lo el T e 5

0

2

d e (A0 g (L)Y v = 12T e-aty o0y

(5 = AearE) 1y () A4 D, (i :
G- 2oy @i - durdte - T6AGED “J

K (x) == 4" Re lc 5

oh

e . Sy ]
S N S R LV

o
i

it
b\ L — 172 ~-1/2,
- “25) g ‘Bi; Bs == (p-] 20) A (- Z0)Y 7

p = ~§;—(/;
1 , b -t 543 0 g% Ll 19):
Az;«4(no_m-,1g>4.zn;ﬁ»o (- 16 4 597 -1 ¢F - 12¢);

b ~ 2 ) 4 s
@;4fﬁmuwumy—&hgq(manwlmx
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s b x[ox X1 ) f (20) L 5) X
E(x) = "16wip -} ntet 26[ g (2w ¢ ) ‘ ‘.

85 N 2\,
X (3 — 20f) = _‘si] Cxp (-~- "'E"')’

11 /2

B, == (p — 20) (p + 20) " - (p -1+ 20) (p -~ 20) (n.= 1.9)
| o ,/?n_:; 2;;;;'__ e i] .
Dp - [ Ay E-TowiE Tt - b2 - 80P F=D
£ E—dox n Ser T owic |
R (1 CAP[(- - 1 & “'~“”b]
X []/gwflm ( ) VS ]
(n=12)

3 b<xLct-b

The expression for ¢ is found from formula (10); in this case

201y

v 87 el (R esp (- = Bl (0 KO 1

S8 K (x—b) - Ky - 0
M o= 2001 (v = D) - E(x - - b

Here, x, b, t and w are the original dimensional quantities. Analysis
shows that the residual term R of the series is of order e3 for small values
of €. Therefore, the resultant expression (10) gives the form of the free
surface in the reglon x| > b for finite values of time t with an error of the

order of ¢3 when ¢ -+ 0.

Let us note that when viscosity is disregarded, the expression for g
in the region ct - b < x < ¢t + b may be written as implied by equation (10),
in the form

L, 1) = —L—ac‘od\.—-clt) -0 (w) (11)

Where 0(w) includes waves with amplitudes which approach zero as
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w + 0. Comparing equations (11) with expressions (13) and (14) in [8] where
the effect of viscosity on the fundamental wave was studied, we see that

rotation tends to increase the velocity of motion of the fundamental wave ¢y >

> ¢ and has no appreciable effect on its amplitude with an increase in time t,
whereas the viscosity acts in the opposite manner tending to reduce the velo-
city of the fundamental wave and having a considerable effect on its ampli-
tude (the amplitude of the fundamental wave decreases with time according to
an exponential law).

The problem studied above was for initial elevation depending on a
single variable. Let us consider a similar problem for initial elevation de-
pending on two variables.

Let us assume that

Ly, 0)==af(x, 1) (12)

and that there are no perturbations in the liquid when t = 0. The problem
reduces to solution of the system [7]

o s du
S =200 e e g I I
o T E o TV

0o (13)

with initial and boundary conditions (2), where the function f depends on two
variables-~x and y.

Using for the solution of the system (13) the Fourier transform with
respect to the variables x and y, and the Laplace transform with respect to
time t and satisfying the initial and boundary conditions, we get an expres-
sion for the form of the free surface:

< 20

LR, y, ) = i(} S Y, By explirRcos{i — )l r.nds, (14)

9
v o
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PENE /34

N ] a"—‘;;‘l_ﬁf__ R —
@ (r) = "‘2:}7' 5 “ad (1, o, &) ¢ du:
§— fco
. <o 271
Y, 8) = le S F(R, yyexp|— irR cos(6 — y)] RdRdy (15)
P

Here A(r, a, €) €, o, c are the same quantities as in equation (5);
R, t and w are dimensionless quantities equal respectively to Rocvl, ot,

wo-l; polar coordinates R and v are introduced in place of the values x and y.

Since integral (15) is convergent, r¢(r) > 0 when r -+ «» and ¥ (r, 8) -
-+ 0 when v » «», at least as r-l, then integral (14) will obviously converge

for an arbitrary function f(x, y) which may be represented by a Fourier in-
tegral. Expression (14) is an exact solution for the problem as formulated,
valid for any values of the parameter «.

Let us analyze expression (14) further for small values of the parameter

e. Expanding the function A—l (r, o, ) in a series with respect to the
parameter e, limiting ourselves to the first three terms of the series as in
the preceding case, and writing the residual term of the series in Lagrangian
form, we get expression (14) in the form

C— Lok el - %0 -+ e (16)
Gy =" oy § (00, 00, () F ™ lexp (irR cos (8 — y)] drds;
Ay (17)
(UL
s-f1oo
@, - P S‘ et et ('_r/.-—-Qm:i L
i 2 ) o (e 4wt 4 )2 e B
S izo
I 20r R - :
. RV oitow ) eda (=01, 2) (18)
1 st ioo
Py = Hor S (a2 4- 4w (r, @, Ge)e™d/ (0 <~ < 1),
SefOD

where « has the same value as in equation (7).

An investigation of the expression for Lz shows that it is bounded and

has a finite limit for finite values of time t as € - 0. Therefore, the first
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three terms of expression (16) give the form of the free surface of the liq-

uid with an error of the order of ES as € - 0.
For an initial elevation which is symmetric with respect to the coordin-

ate origin [f(x, y) = f(R)], the form of the free surface will be expressed
by formula (16), where Ck’ in view of the equation /35

o

L
1 : : .
o | CXD (7R ecs Ly d9 e J (1 R)

(=3

takes the simpler form

[ acf DY g, () o OR) Py (R==0,1,2)
0 (19)
p() == [T (R J, (R RAR.

0

Using the method of contour integration for calculating integrals cpk,

we get an expression for the form of the waves on the free surface

where the &y are computed from formulas (17) in the general case, and from

formulas (19) axisymmetric case, and for the expression d)k (k =0, 1, 2) take

the following form:

G, ()= cosgf -t 4o’y (1 — cos of);

5 0) = oS gy singl <, g

W, () = by o8 gt - Wy singl - 4, -y
1

D —-4 J RE L ] o - 1 Ky \
Pyg == :L—;/z ryg {LL[TFWZ-;-—(/———S@)(/ . -2—1-\53—}-81«);‘1;}; (20)

Y = @221 (3 — doof);
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VEE —100°
(20i — B2r? o £ — doig)?
v

|y == ALY xpc = —r1(D -+ G2);

P, = 207" (_18§_ — 62 — 3/ 4- co?ﬁ);

_i'dé};

t= — 2 Re { £ 1 46 T
\ “’)_ o §2,,(§" 4w7) ozt &]-
» § (2(1)[ - :;)3 (1-2 ,}, gz :__-4'(3‘,)“ [lbj,
g
A 200 (g - 20y
=g -2 - Q)L (g -2 -\- ‘2(9)“"’2;
1yl ’ 36
- (f/-I ooy Mg - 20y /36
D= P aB, 4o (G — 5 B LD F CRR - A L
=i 1{% = 2 3 D] OL 41 9 3 ¢

+ ( B, c) [;1]-,

E = !h[?aa (cl — 33> -—~~a,ﬂ;];

G s

b, 1 9 5.
Gy == 4 77¢ 7 (?1==j(51"5<’—1";";;”(/ ’
a, == (2 -2 »(/ __.9) q__»); q-- 'l,flf-i AL __/?“:,-)2

.);

Let us note that t and w are dimensionless in these formulas, and that
all notation differs from that used in formula (10).

Let us find the asymptotic expression of the form of the
for a symmetric initial elevation and large values of R. i

)<

4

’Jo(k)- ]//;—-—coc (x

free surface
Using the formula
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which is valid for all positive values, we get

(=21

¢ =a 5/1{5 N EY g RISV S AV .y
h ¥ iR RS ) L‘]h (l')f cos (fR 4) ar - 0 (l\ ), (2 1)

0

where B is some positive number; ¢k is defined by formula (20). Analyzing

integrals (21) by the method of stationary phases for large values of R, we
get the following asymptotic expression for the form of the free surface

: [aRTIECY R <el:
= - 22
o™ R>e (22)

where

Fry == 07 (= D e () sineg - e () cosend;
- ? RYRN
vy (1) == 1 -»_4(0?4' : ey (1) - €Y MO’

2 () == {eds (1) 4- W )7

3

-1 . RS VR,
westR ai:»rJ3-~!/q—wfkrg ry - Qe (e Iy

The resultant asymptotic formula is true for values of u > 1 which are
small in comparison with R and for non-oscillating functions ¢(r), for in-

stance for the functions f(R) of the form exp (-kR) or exp(-kRZ); R, t and w
are dimensionless in formula (21). It is readily shown from formula (19)

t - < at any fixed point of R, the elevation of g will tend toward zero as
t—2. It is evident from equation (21) that the leading front of the funda-
mental perturbations for a symmetric initial elevation will move over the
surface of a viscuous rotating liquid in the radial direction with velocity c.

For an ideal liquid with regard to rotation, the expression for ¢ takes
the form
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g=a{wrlR) cosV r# - dw® tdr.

G

Assuming that the parameter w is small (the maximum value of w for the
earth is 7.3-10—5), expanding cos/rz + 4 mzt in a series with respect to
the parameter 4 w?

, limiting ourselves in this case to the first two terms of
the series, and writing up the residual term in Lagrangian form, we get

L= a[n, + 4oy 40 (o),

-
—
[

y

i

= [ %) rdy Ry cos riar,
0
o= S U (1) [/"“ (1 — cos L) % £ sip f;JJO Ry dr.

For the function f(R) of the form

[l — R~ R b

F(R) == w>0
HRy=1 R>b

we have [1]

biFy oo 2N g 1) T (0)
$ (@) 5

* Taking account of the fact that [1]

(==

5#%*-7“.,1 ("o (rR){ st Vg =0
0

—tsinr |
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For R > t + b in this region (in dimensional quantities R > ct + b), we find
an expression for the form of the free surface

= 4u% gr-—"\;a (MY —~cosrf) Jo (rK) dr,
0

where ¢(r) is defined by formula (23).

The resultant expression is the perturbation of the free surface which
precedes the arrival of the fundamental wave mO(R,t) and is caused exclu-

sively by the effect of the Coriolis force.

Thus in the case of axisymmetric initial elevation of the free surface
and in the case of a liquid of constant depth, both the effect of the
Coriolis force (without regard to viscosity) and the effect of forces of
viscosity [8] (without regard to the effect of Coriolis force) give rise to
disturbances which precede the waves, i.e. perturbations of the free surface
observed before arrival of the fundamental wave.
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MOTION OF A WING WITH DEFLECTED AILERONS CLOSE TO A BAFFLE
V. G. Belinskiy and Yu. |. Laptev

ABSTRACT: The motion of a horizontal wing of large aspect
ratio with deflected ailerons close to a solid baffle is
studied. Simple analytical expressions are derived which
may be used for evaluating the effect which proximity of
the baffle has on the 1ift coefficient, the induced drag
coefficient,the moment of banking and the moment of yaw-
ing.

The motion of a wing with deflected ailerons in an unbounded fluid has
been studied by many authors [l, 2 and others], however, the effect of flow

boundaries on the characteristics of such a wing has not been sufficiently
investigated.

The effect of the free surface on the characteristics of a hydrofoil
with deflected ailerons was studied by T. Nishiyama [4]; he showed that the
proximity of the free surface reduces the 1ift and the banking moment, but
increases the inductive drag and the yawing moment.

Simple analytical expressions are derived in this paper which may be
used for evaluating the effect which proximity of a solid baffle has on the
hydrodynamic characteristics of a wing with deflected ailerons.

The distribution of circulation along the span of a horizontal wing of

large aspect ratio moving steadily with a velocity Vo at a distance HO from

a flat solid baffle (Fig. 1) is determined by the equation [3]

+
- a, = - Tl
PO = 5750 @) {a(f/)’*' —2:1‘5'1 (’)[ g—

o ~ (1)
G- :ﬁ’i?z_ﬂ] -
Wy — 0?4 4H4®

Here 3, is the tangent of the slope to the curve Cy = C (a) for an unbounded

fluid; W(;j is a function which accounts for the change in ao in a bounded

flow; a(y) is the angle of attack of the wing;
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A(y) is the aspect ratio of the wing equal to L/B (L is the span and B is the
chord of the wing).

Let us examine the case of motion
of such a wing with ailerons deflected
through a small angle. Let us assume

272
that deflection of the ailerons through
a small angle is equivalent to a certain
. - e twist of the wing. Deformation of the
& - wing with deflection of the ailerons
. - ot . . . B
/:> ////S;:/"t““‘ o leads to asymmetric distribution of the
(//i/cj/ﬂ;2§<5’/f‘ ;///“ circulation along the span. Let us
Pt 777 represent the circulation as the sum of
-~ »/mjﬂ/ symmetric and asymmetric terms:
/4¢ﬁfﬂ\
,//A/// ~
/71"///’ ]—‘ - = -~ -
W) = Ts) -+ V() =
, T T, F@-T (2)
Fig. 1 ' 9 T g .

In an analogous manner, we write the angle of attack of the deformed
wing

@@= og (- e - L TEC g A B 5

where o (y) is the angle of attack of the wing with undeflected ailerons;
s
aa(§) is the angle of twist of the wing which accounts for deflection of the

ailerons.

The kernel of equation (1) may also be represented in the form of a
symmetric and asymmetric parts:
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G @3 ;l) = Gs(;: ﬁ ":~ Ga (:[:,» 1_])

In a like manner

GC (5. 1—]) = GSS(’Z{, ﬁ) 'l‘ Gsa@, ’\_]);

(4)
Gy (5, ) = Gygly. ) 4G (o).
/41
Analysis shows that in the given case
Gy fu,m = Gadir ) =0 (5)

With regard to formulas (2)-(5}, equation (1) may be reduced to two

independent equations which determine the symmetric and the asymmetric parts
of the circulation:

+1
- l i - \ - - =1
) = 5}*@ P (1) {Us(!/) +- 1)}(—5 Ve D (5 S, n)dn}, 6)
Ta 7 = . 7 o :)
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When H0 - =, equations (6) and (7) take the form
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Let us give approximate solutions of equations (6)-(9) for a wing of
elliptical planform. In conformity with this, we assume

RIS Ve
U g - (10)

We shall seek the solutionsof the equations in the form

@) = By V11—, (11)

where A and B are constants.

Integrating by parts,we reduce equations (8) and (9) to integral dif-
ferential form:

+1
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41
- a - I Cw - 1 1 =l (13)
== 0 - La — a \l e I A
L@ 21(@){C W) =3 j[F‘( ){ (y—mn) : W+ 0 ](Wj

In solving equation (12), we take account of the fact that wc(§j = a,

where o is the angle of attack for the wing with undeflected ailerons,
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The solution of this equation with regard to equations (10) and (11)
gives

2a,

A Wy

1 _f'n
* (14)

The solution of equation (13) with regard to expression (10) and (11)
gives a linear law for distribution of the angle of twist for a deformed wing
along the span

Uy Q/) == ;,
£ (15)

Where o . is the angle of twist for a finite cross-section of the deformed win

£

The constant B_ in this case is defined by the formula

Boo = i (16)

After integration by parts, equations (6) and (7) reduce to integral
differential form:
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Solving these equations with regard to expressions (10) and (11) and
assuming a linear law for distribution of the angle of twist of the wing along
the span, we get the following formulas for determining the constants AH and

BH:

e (19

RV (20)

In these formulas
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We find the lift coefficient, the coefficient of inductive drag, the
banking moment and the yawing moment from the expressions

+ _— = -— - - - —
Cor =1 | ils@ + vl @1
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Here Vis and ;ia are the symmetric and asymmetric parts of the inductive

velocity V&. For these quantities we have the expressions
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Substituting expressions (11) and (24) in expression (23), and also
taking account of formulas (14)(16)(19) and (20), we get the following formu-
las for the characteristics of a wing with deflected ailerons:

for motion in an unbounded fluid
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for motion close to a solid baffle
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The function Z;S
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is determined from the expression
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The coefficients for the effect which proximity of a solid baffle has on

the hydrodynamic characteristics of a wing with deflected ailerons are deter-
mined from the formulas
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The function y may be determined from the formula

p= 140,

where
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The following approximate formulas are derived for calculating the

functions Cl’ C2 and 2;3:

y == 1 --0,512— 0,25t — 0,0625v% — 0,016878 —
— 0,0233v'0 -~ . 0,019971;
L, =1—0,3751' — 0,250%° .~ 00,7808 —

— 0,062431 — 0,0310v';

Ly = 1~-0b12-1-0,1257 -

0,03121% — 0,1408%8 .

-— 0,069 — 0,0700712 -— 0,035611.
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The graphs of functions gy
(so0lid), Cy (dot-and-dash) and Zs

(broken) are given in Fig. 2 and the




graphs of functions 5&, 5&1 (so0lid lines) and ﬁ;, ﬁ; (broken lines) are

given in Figure 3 and 4.
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LAMINAR BOUNDARY LAYER ON A HEAT~INSULATING SURFACE AT
HIGH GAS VELOCITIES WITH SUCTION

L. F. Kozlov

ABSTRACT: A simple approximate method is proposed for
calculating a laminar boundary layer in the case of an
arbitrary velocity field on the external boundary with
suction, The case of a heat-insulating surface is
considered with a Prandt]l number equal to Unity. The
steady-state motions of a wing and a soiid of revolu-
tion are analyzed in a compressible gas at Mach numbers
of less than three,

The suction of a gas through the permeable surface of a wing or a solid /49
of revolution moving at high velocities may be used for streamlining the flow
or for preventing detachment of the boundary layer. Practical use of such a
method for controlling the boundary layer may give an appreciable improvement
in the aerodynamic characteristics of aircraft and vehicles moving close to
the surface of the ground or water by reducing the components of frictional
drag and pressure.

Solutions are known for the system of equations of a laminar boundary
layer in a compressible gas for the special case of a plate with uniform
suction [6, 7]. However, these solutions have more theoretical than practical
significance since the necessity for integrating the boundary layer equation
for the most part arises for the case of arbitrary velocity distribution on the
external boundary.

Existing methods for approximate integration of laminar boundary layer
equations are based on the use of the integral relationship of impulses. The
accuracy of these methods depends to a considerable extent on successful ap-
proximation of the velocity profile across the layer. For instance, the
velocity profile proposed by G. Schlichting and used in [8] for computing the
laminar boundary layer in a compressible gas gives a very rough approximation
of the actual change in velocities in the boundary layer, especially near the
point of detachment of the layer.

Let us examine steady streamline flow of a compressible gas at high velo-
cities around a flat wing. For this purpose, we introduce a coordinate system
with the origin located at the leading critical point, the x-axis directed /50
along the surface and the y-axis directed along the normal to the wing surface.
Assuming a Prandtl number equal to unity, we write the system of differential
equations for the laminar boundary layer with regard to longitudinal pressure
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gradient on the outer boundary in the form

Ou ‘ on €py a du \, (1)
QU -5+ QU G T T de 57 (H ‘a‘_,j)a
7] a
s (o) -+ oy (ev) = 0; (2)
O , a2 oo\
ar gz g = g g ) (%)
py = ORT; (4)
o=y (_1"") (5)
1

Here, u and v are the projections of the velocity vector in the boundary
layer on the coordinate axes; pg is the predetermined pressure distribution

on the outer boundary of the layer; 6 is the stagnation temperature, equal
2 . . . .
to T+ (u /2Jcp); T is absolute temperature; J is the mechanical equivalent

of heatl: R is the gas constant equal to J(cp - cv); Cp’ CV are the co-
efficients of specific heat of the gas at constant pressure and constant vol-

ume, respectively; u is the dynamic coefficient of viscosity; p is the
density of the gas. We shall use the subscript 1 to indicate the values of

these same quantities in adiabatically and isentropically decelerated flows,
and the subscript 8 to indicate the values of the quantities on the outer
surface of the boundary layer.

For air R = 287.1 m2/deg-product secz, n = 0.75 at temperature -23° <
< T < 327°C,

System of equations (1)-(5) is closed and therefore may be used for

determining the following unknown quantities: The two components of velocity,
viscosity, density and temperature of the gas.

We satisfy the following boundary conditions on the heat-insulated wing
surface in the case of suction, and on the outer boundary of the layer

1In the International System of Units J = 1.
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v==0; v = 0y %:0 when 7= 0

“u e Usy T =T, when y =98,

Where vy is the localized suction velocity; UG and Td are the velocity and
temperature of the gas respectively on the outer boundary of the layer; ¢ is
the thickness of the boundary layer.

Let us consider the case of a heat-insulating surface, i.e. where there /51
is no heat transfer through the surface. In this case, the heat will be car-
ried by convection due to suction of the gas through the porous surface.

The integral of energy balance equation (3) is obvious! [4]:

) " u !
G=-coust or T ez 20l

: 6)

9

o .
where i,- J¢» Ts - 5~ 1is the total energy.

Integral (6) satisfies the condition for absence of heat transfer through
the surface since the kinematic condition of gas attachment to the surface of
the foil is fulfilled., It follows from this integral that the surface tempera-
ture is equal to the stagnation temperature of the oncoming flow when there is
no heat transfer.

We find from equation {(6) that

9 ) a
« u \ e l(J g L,;
7 m.11<l—~—2;/-where'1 r’?é;<[°+_?f).

(7

According to expression (7), the temperature depends only on the change
in the longitudinal component of velocity. Therefore, the form of the boundary
conditions for the transverse component of velocity on the surface has no
effect on this expression.

1 This special solution is valid for streamline flow with a longitudinal
pressure gradient [9].
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We compute the pressure from Bernoulli's equation:

AR
e (1

(8

while the relationship for density is determined from the ideal gas law

In equations (8)-(9), «

= cp/cv.

Using power relationship (5), we get

u* \n
B gy (1 — Tzl—o) .

(9

(10)

Our subsequent calculations are done in Dorodnitsyn's variables [1],
which in the given case take the form

x »
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N

(11)

(12)

Then the equation of the boundary layer (1) and the equation of continu-
ity (2) are transformed to give
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(13)
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where

After transformation of equation (13) with the application of expression
(14) and integration by terms with respect to n from 0 to Gn, we get the

integral relationship

4\7 61]
a N
2la—wan+ S o [ (Us =- ) dn —
[1] 0
by (15)

, — a
o P -l

where én is the thickness of the boundary layer with respect to coordinate n.

Since we have u = 0 when n = 0, the integral

b

o [ (Usr — )] dn) == Ugo,. (16)

Taking account of expression (16), we transform integral relationship
(15) to

U U,
Tzl et [F(f) — £ 15 1”“ e, (17)
£ T U022 Vi-u:
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where
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Returning to the physical x-y plane, we reduce integral expression (17)
to the final form

l_.. - —, P .
dx : 2 %t_ L V- (25)

In order to calculate relationships (18)-(24), we assume that the velo-
city profiles across the boundary layer are a single-parameter family:

I S o
T =0 0/8y, 1) (26)

and that they are independent of the Mach number in explicit form. For this
purpose we use a six-degree polynomial [3] or a system of integral relation-

ships of "“three moments [2]. In both approaches to computation of the function,

we get
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(27)

/54
where the numerical values of A and B are given as a function of the suction
parameter t** in Figures 1 and 2.
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Fig. 1. Graph for A as a Function Fig. 2. Graph for B as a Function
of the Suction Parameter t#** : .} of the Suction Parameter t¥%: 1,
From Data of [2]; 2, From Data of From Data of [2]; 2, From Data of
[31.- [3].

We integrate differential equation (25) in final form

j‘ UF A~ 20 )1 - U)" dx,

0

dUjdx
= ra oy (28)

where

The values of the form parameter at the leading critical point £(0) =

= A/B are shown in Figure 3, while the values of N are shown in Figure 4.
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Fig. 3. Curves Which Show the Values Figure 4. Graph for N in Air As a

of the Form Parameter at the Leading Function of the Suction Parameter
Critical Point f(0): 1, From Data of t**: 1, From Data of [2]; 2, From
f2]1; 2, From Data of [3]. Data of [3].

After calculating the form parameter f(x) from formula (28), we use the
relationships ¢(f, t**) and H(f, t**) given in [2 and 3] to determine all
remaining characteristics of the laminar boundary layer in a compressible gas
in the presence of suction from formulas (18)-(24).

The proposed method is developed in application to two-dimensional flow.
In the case of an axisymmetric boundary layer on a solid of revolution, the
same formulas may be used as are used for two-dimensional flow. The only
change is in the form of equation of continuity (2) where the cofactor r

OJ
the radius of the cross-section of the solid of revolution, is added in
parentheses. In this case, integral (28) takes on the form

d[/'\/ dy l‘ el 9 . : TIOAN—1
o I TTrplA = 20110 — U lx.
100 == pis = oy U7 11— O (29)
i}

The remaining characteristics of the laminar boundary layer on a solid
of revolution may be calculated from the same formulas as those used for the
two-dimensional case.
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EQUATIONS OF MOTION OF NON-NEWTONIAN FLUIDS

I. A. Pishchenko, 0. M. Yakhno and A. I. Ovsyannikov

ABSTRACT: New equations of motion for non-Newtonian Fluids
are theoretically analyzed with regard to their rheological
characteristics {effect of transverse viscosity, etc.).

The equations of motion for these fluids are given in both
cylindrical and Cartesian coordinate systems.

It may be assumed in most cases that the motion of rheological (non-
Newtonian) fluids in which consideration is given to the change in structure
of the fluid itself caused by singularities in the given flow. These singu-
larities may be due to processes of reorientation or some complication in the
structure of extremely large molecules. For instance, during the motion of
polymer media, straightening and stretching of the long-chain molecules is
observed which leaves its imprint on the singularities of this flow.

The given structural changes in the flowing media are dependent to a
considerable extent on the forces which produce this flow, i.e. on pressure
forces. Depending on the time of application of these forces, the liquids
may show various properties: elasticity, plasticity, etc., i.e. properties
which are characteristics not only of non-Newtonian fluids, but also of New-~
tonian fluids and solids.

The development of the science of structure formation has shown that
between the limiting states of matter--ideally elastic bodies and media which
conform to Newton's law--there are continuous transitions which result in a
tremendous variety of media of an intermediate nature which are essentially
different from solids only in their relaxation properties.

Some authors [1, 3] have concluded that there are no fundamental dif-

ferences between liquids and solids, and that there is a common constant which
characterizes both types of media. This constant is the relaxation time

where n is the coefficient of viscosity and E is the modulus of elasticity for
the medium,

If the deforming forces act on the given medium for a short period of
time, any fluid will be 1like an ideal elastic medium. This statement is
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completely applicable even to such classical Newtonian fluids as water.
Actually, if the deforming forces act for_a time period shorter than the re-
laxation time for water, which is Tw = 10713 sec, then the water will behave

like an elastic body with a modulus of elasticity E = 1011 N/m2.

For considerably more viscous fluids such as polymer melts, the relax-
ation time may reach an appreciable value. In this case it becomes necessary
to consider the elastic properties of the moving fluid. These properties
depend to a considerable extent on the temperature of the medium since the
values of T and n change considerably with a variation in temperature, while

E is nearly constant.

The generality of the properties of rheological fluids is not limited to
elastic properties alone. It is shown in [6] that certain conditions in high-
ly viscous media (polymer media) may lead not only to stresses which are longi-
tudinal with respect to the motion of the medium, but to stresses which are
normal to that motion.

Weissenberg observed the '"transverse viscosity effect'" which now bears
his name, This effect is observed under the condition

—p P —p

bo o o a1

Pau—_Pb:x . f) R

Ra:i - [\)Z‘ Rb.‘.v - R[u B Razr — R & (1)

where pan’ va, PCw are the principal Weissenberg stresses; Ran’ va, Rcw

are the components of reversible deformation; g(P, R) is the shear modulus of
the system.

Subsequent investigations have shown that this effect is observed not
only in high-polymer solutions, but in any dispersed systems which are some-
what elastic with respect to shape. Since the elastic properties of a material
are determined to a considerable extent by relaxation time, the extent to which
the Weissenberg effect is observed also depends on time T.

The properties of rheological media given above are expressed in the
equation of a state for a non-Newtonian fluid proposed by Reiner with regard
to the hypothesis of existence of a coefficient of transverse viscosity n,:

3
Pii== pSuj - 2Ry - 4, ) RuuRay,
(2)

where p is the internal pressure of the fluid; Pij are the components of the
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stress tensor; §.. is the Kronecker delta; R.., R, , R . are the respective
ij ij ia’ oj

components of the strain rate tensor; n, n, are the coefficients of longi-
tudinal and transverse viscosity, respectively.

According to formula (2), the tangential stress 1 during motion of a /58
rheological flow should be determined from the relationship

T = T]E ~_l‘ ";—' ‘l ([_{' ‘T[é)' (3)

where R is the strain rate tensor.
In this case it may be assumed that the coefficients of longitudinal
and transverse viscosity are functions of the shear state. Since n and R

are scalar quantities, they may be functions of scalar quantities only such
as the three-invariants of the strain rate tensor. In view of the condition
of continuity, the first invariant I1 = 0. Consequently, n and n, are func-

tions of 12 and 13 only.

Let us assume in the first approximation that the quantity Ne is close

to constant, and that the coefficient of longitudinal viscosity n may be de-
termined from the Ostwald power law:

[
.

e 4)

where K is a constant which characterizes the density of the medium; n is the
flow index; 12 is a quadratic invariant of the strain rate tensor R.

In Cartesian coordinates, the expression for the second invariant of the
strain rate tensor may be represented as

ol (5 (2]

Y KNS P W O Y )
T Tox dy Ay dz ez ox §°
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For the case of two-dimensional flow, the given invariant may be re-

written as follows

Y o

ax2 ‘ "02 f)x ) v\
|3 G G ©

In view of the fact that the change in velocity along the flow is con-
siderably less pronounced than the change with respect to cross-section, it is

natural to assume that relationships of the form

@1 0u
ax ox
avx and Jo.
Oy oy

~ (). )

Substituting equation (4) with regard to expression (7) in relationship /59

(2), we get an expression for the rheological Reiner's law

3
W

t 4!]3 ,}._1 R[{,:Raf. (8)

o TE
Py =z pby-1- 2K (5 © Ryj -

n—I

=1

To derive an equation for the motion of a non-Newtonian fluid, we use
the Reiner formulas derived above on the one hand, and equations of motion for

a continuous medium on the other.

The equations of motion for a continuous medium are written in stresses
in combination with the equation of continuity in the Cartesian coordinate

system as follows:
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According to
and strain rate is

Substituting the resultant expressions (11) in the equation of motion
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formula (8), the relationship between the stress components

written in the form
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for a continuous medium (10), and performing certain transformations, we

finally get
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& 2 0z az] -4, [()x }-J (a:x, boox ) (&L Yooz > b

L2 ¥ Oy | G\, 0\ 8 Y &, 00
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(12)

It is often convenient to use an orthogonal curvilinear coordinate
system such as a cylindrical system instead of the rectangular coordinate

system,
cal coordinates r, ¢, z and the Cartesian coordinates x, y, z:

r=reose ¢ o= arctan%;

r=V iR

2 = Z.

Yy =rsing,

The Lame coefficients take the following form:
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In this case we have the following relationship between the cylindri-

(13)
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dx M e Y Y
— T / \ 1 — (‘)" (?i) N EL) =1
qu or )+ or ! (E)r =1

14
Ho=r  h,= 1. a4

The projections of body force F on the cylindrical coordinate axes will
be PE..s pg¢, g, Then after computing all terms in the equations of system

(12) from the corresponding formulas, we get an equation for the motion of a
rheological fluid in cylindrical coordinates:

du dv v, 0v o du ap
r @ 4 © a4 .
Q(-;),“ SRl e T A ) =T et
{ . 1l n—1
b — R . 2 o
T I T A e IR L N )<o“" P )
R A R T iU R

E 3 ot o
2 OUl” ) (o0, O ) gt %oy -
; 0z E or 2 ) '
a

A4 f]ﬁ, [,‘i 51 _a_U£ ._(ZUL. S >j .a_UL -4 E,U_‘l X
! T [Or Y ) Op < 0 or

=X, y,2 A==x,y 2
15
du g Gug g i do ooy, \ du Cug (15)
X =% S b 3 Rt ST I gt GO T N [

o ¥ o 0z /L o 0z | \ oa or

T==x,p1,2

1 Ovg Oy,

/.y Tey Tew
a=1,1,2

If we assume that K = y= const, n = 1 and n, = 0, systems of equations

(12) and (13) take on the form of Navier-Stokes equations for a viscous fluid.

Equations (12) and (15) may be used for studying laminar motion of non-
Newtonian fluids with regard to the effect of the transverse viscosity, i.e.

elasticity. The generalized Reynolds number which characterizes the nature of
flow in the form considered by Metzner [4]

vd O = Re
Reg == T PRI \11 TR Metzn.
k()

(16)

does not account for the effect of elasticity and therefore should be made more
precise for elastic flows. Studies conducted by Harries [5] showed that the
Reynolds number for flows which have the transverse viscosity effect is a
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little lower than the values calculated by formula (16):

Re Metzn

Re . =—= (17)

el

Here, ¢ is the correction coefficient which takes account of elasticity of
the flow.

[] ;P Lo’
U T ey e

where Pnn — Pee is the difference in the tangential components of flow pres-

sure (n and e are the axial and radial directions).
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RIEMANN AND ALFVEN WAVES

N. V. Saltanov and V. S. Tkalich

ABSTRACT: The authors consider equations of magnetohydro-
dynamics with conduction anisotropy. The conditions on the
discontinuity surface are written out as well as expressions
for the force and moment acting on a body in a flow. Waves
of finite amplitude are studied for the symmetric problem.

A system of equations in magnetohydrodynamics with conduction anisotropy
[10] with regard to ohmic dissipation takes the following form:

-3 . N R R .
ZI/ crol (U X 17 - PVH x vot H -— v, tot il); (2)
-
0 1 U (3)
w5y ok div v = 0
> - . .
ol R = S o , HX ol I 4
o~ vy = UXrotl =e ¥ (brddp SR > : @)
4 U: &L 1 1 e .o (5)
o\ Ty e Ve
- - N N -
e (q/ Tyt P) U G S s st I (6)
_i | > o '_-} Car
Leez (1] X (U =BV rot 1) |- v,, rot H}, e -

> c s
j== o Totl,

(8)

> >

where and E are the magnetic and electric fields, respectively; U is velo-

>
H
city; 4 is the energy current density vector; V is specific volume; p is pres-
sure; ¢ is the internal energy of a unit mass of the fluid; c is the velocity
of light; e is the constant of electronic charge; M is the fluid mass per
electron; Vo is the coefficient of magnetic viscosity.
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In the case of an ideal gas (vm = 0) with certain assumptions [3]

expressions (5) and (6) may be used to give

S, .. SO
p = ]) (I/, S)v —gz_ '_5'_ -+ diV iv_ = 01 (9)

where S is the entropy of a unit mass of the fluid,

Equations (1)-(4) and (9) forms a closed system. In the case of an
incompressible fluid (V = const) it has been shown [3] that it is often suf-
ficient to use only equations (1)-(4).

. . . R . . >

Let us consider a stationary discontinuity surface with unit normal n.

It is convenient to use the divergent form of the equations in setting up the
conditions on this surface. Therefore, we also write out relationships (2),

(4) and (8) in divergent form:

oH, e, N
wr vy, =0 dvi=0 (10)
s U, o, Uy, AV
g S = 0 = S () B

— »4‘_[_ Hil, (k11,2 3), (11)

where ¢, is a unit antisymmetric tensor of third order; Hik is the pulse

ikl

flux density tensor.

Equations (1), (3), (5), (8), (10) and (11) give us the following con-
ditions on this surface:

> - —> U
(00,1 = f< By = ftrot Thp= [ | = 17,0 = 1g,1 = ©, (12)

where the subscript n designates the components of the vectors and tensors
which are normal to the surface; p is magnetic permeability.

Let us consider a fixed solid located in the flow. Using the conditions
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of continuity for the normal components of the pulse flux tensor on the sur-
face of the solid, we get the following expressions for the force 6 and the

> . .
moment M acting on the solid:

> — -»
-5
> >, Hox Uiy
;E——(p "{'"Sn)n -+ ZE”H'——V— s (14)

where dS is an element of area on the surface of the solid.

Let us consider a problem in which the quantities ﬁ, U and V are in-

dependent of the coordinates X, and Xz with additional conditions which will /65

be defined during the course of the discussion., We shall call this the sym-
metric problem for the sake of brevity.

Let us consider the symmetric problem for the case of an ideal gas
(vm = 0). From equation (1) and the first component of equation (2), we get
= H

where x = xl). Let HO = 0, Then the term appearing in equation (2) which is

proportional to B will be equal to 0. Consequently the magnetic lines of
force are frozen in the material.

const (the subscript 1 indicates the x-components of the vectors

In solving the equation of continuity, we introduce the particle function

1 on | . op/at
Vv o Y agjov s = Ua (15)

Using relationships (15) and assuming that the entropy S is also inde-

pendent of coordinates x, and Xq, We write the general solutions of the

second and third components of equations (2), (4) and (9) in the form

(16)
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>
Here «(y), Etw); and S(y) are arbitrary functions of their argument.
Substituting equations (16) in formula (7), we get an expression for the
electric field

(17)

>
where e is the unit vector parallel to the x-axis.

Substituting relationships (16} for ﬁ and S in the first component of
equation of motion (4), we convert to Lagrange variables (y, t) in the re-
sultant relationship. By converting to Lagrange variables in expressions (15),
we eliminate the x-coordinate from the resultant equations. In this way we
get

o P o . 22 ()
o T ey ap s PEr bk gy (18)

Kaplan and Stanyukovich made certain assumptions and reduced the symmet-
ric problem in non-dissipative magnetogasdynamics with isotropic conductivity
to a gas dynamic problem with altered equation of state [2]. The result was
later confirmed in [4] during investigations in magnetogasdynamics and col-
lisionless magnetogasdynamics with anisotropic pressure with several more
general assumptions. As shown above, the symmetric problem of nondissipative
magnetogasdynamics with anisotropic conductivity also reduces to a gas dynamics/66
problem with altered equation of state. This situation means that most of the
known results in ordinary gas dynamics may be extended to the case under con-
sideration. In particular, Riemann waves may be easily studied [2, 4, 5].

Let us consider the symmetric problem of a fluid with anisotropic con-
ductivity (V = const). In this case we get the following integrals of symmetry
from equations (1) and (3) and the first components of equations (2) and (4):

Iy =1y, Up==Uy

]“) - ‘/‘vQ \

U('JC SV (/1 e 13) = Qoty -— Qx4 == [ {{). (19)

o
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Here, H, is an arbitrary constant; Uo(t), Q2(t), QB(t) and f(t) are

0
arbitrary functions of time. Let us note that integrals of symmetry (19)
coincide with those given in [9] where the case of a fluid with isotropic
conductivity was considered.

Using the integrals of symmetry, we convert the second and third com-
ponents of equations (2) and (4) to the following system of linear equations

d 611
(Hf*‘ O )/z--fh o5 QtunﬁVeV b—)'
di _. VH, c?/l A
dr T Tdm ox ’

N - ' (20)
b= (Hy, 1), = s, Ug)y Qo2 (Qa, Qu);

d
dr == ror Vo gy -

In view of the linearity of equations (20), fields h and u satisfy the
principle of superposition [9, 10]. Because of the linearity of system (20),
the well-known methods of mathematical physics may be used in solving the
problems. After determining the fields h and u from equations (20) and sub-
stituting these values in the third relationship of system (19), the pressure
p may be determined. Let us point out that a number of problems in dissipative
magnetohydrodynamics with anisotropic conductivity have been studied on the
basis of systems of type (20) in [6-8, 11 and others].

When VoS HO = 0, the general solution of (20) takes the form

>
u

= (;(W — chZf -Z T 7’7(117); Pe=s X — S U,dt. (21)

where $ and h are arbitrary functions of their argument.

Let HO # 0. By introducing some potential, we solve the equation of /67
electrical induction (20):
y ) 2\ > =3 . 52}7\'
ji = exﬁ_ s Hyt == (i —v, a‘i—) (ex )~ BVIIy-35

di
> o, > = -> (2 2)
— A )+ IR ENG A== (0 a) Ges(, %)
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where A is the vector potential. To determine the quantity & we substitute
expression (22) in equation of motion (20)}:

. 2 >
faga ooy VHo @ = o d 8 2o oS
i-flf_ \}[f VG Tan a1 8 FpVH, a4t o (7xa) == HexqQ. (23)

Let a = 0, Solving the first equation in system (23) and substituting
the result in the second equation, we get

vop 4 OF
oy == BVH, e (24)

9
d /d o2 Vilg ¢ | .
i [m (‘df . "m"&;z") e |

d /d & vitg & 1B o rd el L
H”(zr (( ‘o> - 75"55?} T EVHY (-G ) }[‘ = C. 25)

Thus, the problem reduces to the single linear equation (25). We deter-
mine all physical quantities from formulas (19), (22) and (24). Assuming that
Vo 0, in expressions (20), (22)-(25), we get the relationships for the
symmetric problem of nondissipative magnetohydrodynamics with anisotropic
conductivity.

Let us consider the case of propagation of a wave of finite amplitude in
a nondissipative (vm = 0) fluid along a constant field HO. Using expression

(25) and assuming that UO =0, F~exp 1 (kx - wt), we arrive at the dispersion
equation

(@ — k2022 — BVH 0k =0; o= Vi, (26)

where v, is the Alfven velocity.

Finding the phase velocity v, = w/k from equations (26), we

s get

Ya ke 4nne®

: : =1
SVTEer =gy P= M=V @y

o¢=(l/1-.}-x2=1,-x)va; U
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Here n is the number of electrons per unit of volume. Relationships
(27) describe a fast-travelling (v¢ > va) or high-frequency wave, and a slow-

travelling (VQ < va) or low-frequency wave. The greater the parameter « (i.e.

the shorter the wave length and the lower the density), the greater will be
the difference between the phase velocities of these waves and the Alfven
velocity. When k €1 (i.e. when the waves are fiarly long and the densities
are fairly high), the phase velocities of both waves are close to the Alfven
velocity.

Let us consider the problem of a simple resonator which consists of a

plasma layer confined by metallic surfaces at x = 0 and x = Xy The magnetic

field HO is perpendicular to these surfaces. By using a solution of the form

B = BO x sin kx sin wt to satisfy boundary conditions E2 = E3 = 0 when x = 0

and x = Xy» wWe arrive at dispersion equation (26). In this case, k = sn/xO

(s =1, 2, 3,...). After transformations, we get for high-frequency and low-
frequency standing waves:

— . 2.2
L+ VT3 2N 204 _ n8exg eH,
®= v O O= jpyigeN Ne= e o= 00 (28)

I

Let us consider one the modes. As implied by equation (28), the fre-

quencies of each wave increase linearly with an increase in the field HO at a

fixed value of the dimensionless density N. The frequencies of both waves
decrease when N is increased while the magnetic field is held constant. In this
case, if N < 1, the frequency of the low-frequency wave is closer to Wy Dis-

persion relationships (27) and (28) may be derived from dispersion relation-
ships for the extraordinary and ordinary waves [1] assuming that

()< () (s <

where m is the mass of the electron.
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CRITERION FOR ENGINEERING STABILITY OF WING
MOTION CLOSE TO THE INTERFACE BETWEEN TWO MEDIA

A. N. Golubentsev, A. P. Akimenko and N. F. Kirichenko

ABSTRACT: Differential equations are derived for non-linear
vibrations of a wing under flight conditions close to a de-
flector, the conditions for motion stability of the wing in
the vertical plane are considered and a method is proposed
for finding the region of asymptotic stability for vibrations
of this type.

Engineering Stability for Motion of a Wing in the Case of Perturbations With
Respect to Height

Let us consider the non-linear vibrations of a wing in the vertical plane /69
when the wing is moving with a constant horizontal velocity component v close
to the interface between two media. We assume that the angle between the
chord of the wing and the interface does not change with time. The coordin-
ate system xoy is as shown in Figure 1.

The oscillations of point C located at the

/ IU center of gravity of the wing are described by
Aoy the equation
-¢4_..//' ‘] - -
. o N C QUU_ . , »Q:,:z .
. o o my : mg-f Cy(ha, )8 7, C,(ho,1)S ] (1)
o /7 A v . Ty X = A
Figure 1. Diagram of Wing where m, A and S are the mass, aspect ratio and
Motion. area of the wing respectively; p is the mass

density of the air; o is the instantaneous angle
of attack equal to y/v;

‘%fy (A, (p,iy‘)_

Cl/ (7") «, !/) P ();r om o}

i

Cy(A, ¢, ¥) is the coefficient of 1lift of the wing as a function of aspect
ratio A, angle of attack ¢ and height above the interface y.

Due to the effect of the interface, the relationship between coefficients
Cy(A, o, y) and C;(A, o, y) on the one hand and the values of X and y on the

other is non-linear [2]. Two methods may be used for determining this analyt-
ical relationship. The first method is as follows. If experimental data on
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Cy and C)', as functions of A and y are accumulated in the form of tables or

graphs, these relationships may be approximated by the method of least squares.
Let us assume that the given relationships take the form /70

Cp(hy o, gy = (@ -} Goah - @ 2%) -1 (@1 -1 ayh @A) Y -
A {0y F M - @l 1

C, (0 o, ) = (bg, + bosh = 0g2h®) A= (bio - bink - b2 y -+ (2)
b (b -} byt -l bosBE) iR,

where aij’ b (i, j = 0, 1, 2) are specific quantities corresponding to a pre-

ij
determined value of o determined during analysis of experimental data by the
method of least squares.

The second method is to find the analytical relationships by theoretical
hydromechanical investigation.

Taking consideration of equation (1), we determine the height hO at which

the wing will be in equilibrium from the expression

gy - T 4 0002 - Qg b aph - 0, 02) by b (g, b ayd. -
PN Qg
- YV HS = Islgu . (3)

Solving equation (3), we get

By =« F, (0 m, Soo

(4)
The equation for disturbed motion of the wing may then be written in the
form
- 6Cy(?v,‘r{., n 0v* An -
nZAy =TT ey y=o(h,m,S,0) 2 v !
1 &°C, 0. %, u) ou?
it A S=- (Ay)? -—
T2 dyt y=HyhmS,) 2 (A9)

. | (%)

a2 . oC, (b 4, 1) a7 L

—C (., HYSE Ay — o ST Ayhy —

C.q(7, c, H) a4 3y Lttoss 2 5
2

Cl(hy e, S, o

—‘l“ i ‘y—(“ -”*:l-*"j l S ‘:’,9- (Ay)* Dy.
2 (7_1/" !y—-l{,rl.m,s,v) 2
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Let us introduce the notation 71

Mooy g
Gulhm, 5,0 = — QCU ( ayu_!l—)— jy=ITy(hetn, S, 0) ST‘;T;
P, 1, 3, )= _} al{cy 5)?/5 rj_yz y=£,(2.,1.5.0) %,
Oy (A, m, S, v) = C, (A, o, [, (%, i, S, v)) S g% : ) ©
@, (A, m, S, v) = — ‘?(?.u_(’; "f;»}/_)_‘ w .

Yy y=Ho(h,,S,) 2m
1 °Cy (2 2 g) ,.

@\, m, S, 0) = —-5- - 'J“ay-: et S %J,—l |

Equation (5) is rewritten with regard to notation (6):

A= — DAY - DA — DAY + DNy Dy (A2 Ay, 7

Since Cy decreases with an increase in height y and increases with an

increase in the angle of attack [1], it follows that

M, (h, m, S,v) > 0; Wy (h, m, S, v) >0, (8)

i.e. the motion of the wing is asymptotically stable in the linear approxima-
tion.

However, the singularities involved in the motion of a structure close to
a deflector make it necessary for us to investigate problems in what is called
engineering stability rather than Lyapunov stability in the classical sense.
In other words, we must select the parameters of the system and the permissible
region of initial perturbations in such a way that the solution of equation (7)
does not exceed the level

Ay == -y O m, S, v) (9)

assuming fulfillment of the condition

limAy () :=0,

t-ro
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i.e. it is necessary to establish under what condition the wing in its motion
will not touch the interface between the two media or deviate from this in-
terface by a height greater than 2HO(A, m, S, v) and will be asymptotically

stable in motion.

For this purpose we use N. G. Chetayev's method [3] to construct a
Lyapunov function in the form

. Dy - (,DJ + (p -1
U([ky’ L\y)m - Z(D (L) (A./) T A./AJ + zq) (l) (A!/)‘“). (10)

Then the function

do\ 2 D, Oy, H (@D Dy 4 ¢ T .
(3}‘)7 == (Ay) ["" -+ (D Ay 4+ —"--(—D;{I—,“'E Ay o, AE/'AJ} +

. Ly O 41D a 5 (11)
4 (Ag)? [—- b »711;717-- DAy - ilg‘(r}j) ‘(A!/)']
will be negatively defined in the region
Ayl <1y (A, m, S,v),.
By < y,, (2
if
Oy -1 Dy 41
—_1 +, bl o100 m, S, o) (Uwaw')“”] O m, S, )< 0
o, (13)
— 1 I ‘HD (A, n1, S, v) <0,
In this case
D,
~ 1— '(1,1[1 (*, m, S, v)
Y17 Ty, (@4 Vo, 14
) = D0, - rlv 700 S, v) (14)
Perturbation of the initial values in the region
Oy + O - ® T
sy O OF g O8O+ gy GIOF < O8)
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where

113 (A, m, S, v) D@,

2 Ty AT T
[43)
[1 . l d)i’vl Heo (> m, S, z‘)] DOy
2[',".;‘.‘('1):-7_{- , ~}—'l) l :I i}
R S

Dyh, iy

t

M == min{
l I/-[O ., m, S, v)} (D54 F1-6y]
{

does not disrupt the stability of the system if the parameters of the wing
satisfy conditions (13). This is because the function v(Ay, Ay) decreases
monotonically along the trajectories of the system in rectangle (12) in view
of its construction, but since this function is a positively defined quadratic
form,

Ay &) — 0;

>0

Ay -~

>

1Ay (O] < Hy (%, i1, S, 0),
i.e. condition (9) is fulfilled as was necessary. /73

Let us consider the equation for vibrations of a wing without regard to
change in the angle of attack:

m_;/' = 128 -+ Cy (7., o —- ;’ , y) S -Q;“- . (16)

By using the methods of Andronov's qualitative vibration theory, we may
determine the condition where the solution of expression (16) without attenua-
tion does not reach the level

Ay == —hy,

i.e. the wing is not located on the interface between two media.

Without regard to attenuation, we write equation (5) in the form

75



A_[./.::- alAy + a2/\_l/2, . (17)

where the expressions

ac, (L. a, y) ov?
_ %y ov® . .
= oy e, P O T (10 -+ aud + aph?
oy o 007
-+ 2Ry (g + Auk 4 02,A71 S 5 : (18)
1 0°C, (2 e, 0) . 002 00
4y = T Ay |y==h, S Sm T (azo + (1217\, -+ 6122?.~) S I

satisfy equation (3) with regard to relationship (2).

We write formula (17) in the form

(G Y S Y CV) S
P BT B 199
or
Ay = - /al (.f’\yl)—’ - j— a, (A -} 2C
(20)

where C is the constant of integration.

In the phase plane Ay, A& we get the qualitative picture shown in Figure
2, a and b.

If perturbation of the initial values Ay(0), A&(O) at the initial instant
satisfies the condition

1Ay (0)] < ?/ a, Ay (0))7_;_.342 Ay O)-1-= afil - eyl

then

Ayl < h, when ;>
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Figure 2, Diagram of zone of stable wing motion: a, for a, >

> 0; b, for a, < 0.

Parameters for Engineering Stability of a Wing in the Permissible Region of
Perturbations With Respect to Height and Angle of Attack

The equations of disturbed motion of a wing with regard to the effect of
the change in angle in inclination of the chord of the wing to the Qx-axis

(see Figure 1) are as follows:

oG, @plg) (o 1 FC, O aphy) o, o,

HZ.’\y = - - dy - -Q—L\y -1- g ()U"“b - 'Suz— Ay oy
. e out d o ou

4+ C, (N, gy, h)ST5 B - 3 C, (0, 9, hg) S55 Ay -

v G oA
+Fymr G, h) S5 Byrhg — k Ay,

(21}

. , , [ o R ,
JAD = m (%, ¢, hyoS '-“-2 RUSSE 5 e O, 1) .’JSO._,- Ay -

b G 0 iy 0S Ay = O i (0, g 0S R ARG |
g tit, (hy §, Big) DS =5~ Dy -;—Oyms(/,‘ Dy gy S T -Ap Ay

N QU 4 aa o AL
T 57 T (A, @, 1) bS S AyrAgp — kA,

-1-

where b is the chord of the wing; kl, k2 are the damping coefficients of the
medium; ¢_ is some angle of attack which may be taken as equal in magnitude to

the angle of attack for steady-state (undisturbed) motion.

Introducing the corresponding notation, we rewrite system (21) in the /75

form
L\L/'-: Aghy -+ Apd, - Ara, + Ayhad, - Aytdnd, — % Ad;
(22)
. 12 .
Ay == A@B; 4 AyB, -|- Ay*D; - AyhgB; -1 Ay*hoB; -~ 72‘A(p.
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Using N. G. Chetayev's method [3], we construct two Lyapunov functions
for system (22):
U1 (Ay, Ag) = culby? + cfyAy -+ e
(23)

v, (Ay, 8p) == dy Ay? - dipApAg - daAp®.

Then in order to satisfy conditions

Ay (6] < o

[Ap(D) ] < (24)
where t > 0, it is sufficient to fulfill the inequalities
[ A A - AALR -1 Ay Np - AAPN L <
ho (deiaCan =6y
S i ;
(Cu b e -k o C;:) 10, @V eyplyy -i- G1o)
) (25)
| BAy -1- BAY - DAy g -{- B Ay | <
- 9
g (dy doy —dpy)
i e
(du + - ﬁu) Ady, (23 dypile ++ dia)
in set (24), where
& A -4
. ) R R T S
. 2k 4 TR A TR gk
mn ! m
(26)
5132--02475
) / ] [ B J 1 d By -1
15 e - - = 5T 277 .
vy by B 9%k B,

It is assumed in this case that the initial perturbations satisfy the
inequalities
cuZ (0) - ¢, (0) ' (D) -1 ! Ve e ONTTHTZ TR
uy (0) - i,y (0) y7 (8) - cpy (y (0))F < e : (27)

o” 4d.do, ~- ?
116 (0) 4 d i (0) ' (0) |- dyy (" (0)) < ‘f__(_*f’!;;f; T
22
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METHOD OF CALCULATING NON-LINEAR
PITCHING OF HYDROFOIL VESSELS

V. |I. Kovolev

ABSTRACT: The author considers motion of a hydrofoil vessel
dgainst the waves under conditions where the waves are regular.
Non-stationary hydrodynamic forces are determined on the basis
of the solution found by A. N. Panchenkov. The method of
finite differences is used for solving equations of motion
with variable coefficients.

Let us consider the motion of a vessel with shallow hydrofoils on regular /77
sinusoidal waves (motion against the waves). We shall assume that the am- T
plitudes of waves and oscillations are so small that the squares of oscillation
amplitudes may be disregarded. We shall also disregard interaction between
the forward and aft hydrofoils. The problem of hitching of a hydrofoil ves-
sel was solved in similar formulation by I, T. Yegorov and M. M. Bun'kov [1].

The proposed numerical method differs from that mentioned in that it may
be used to account for the non-linearity of hydrodynamic forces which arise
on the hydrofoils. This non-linearity is fairly appreciable in the case of
shallow hydrofoils even where the oscillations are relatively small.

The coefficient of 1ift C,, which determines the vertical forces supporting
the vessel at a given height depends on the submersion of the hydrofoil hi’
the effective angle of attack a, and the relative vertical velocity of the
hydrofoil IR For the case of motion on quiet water, the values of Y; co-
incide with the tangent of the angle between the line tangent to the trajectory
and the horizon.

Assuming that all deviations are determined in a coordinate system which
is in horizontal motion with velocity Voo the ox-axis is located in the plane

of the undisturbed surface of the water and is parallel to the motion of the
vessel, and the oy-axis is directed vertically upward and passes through the
center of gravity of the vessel. These parameters may be expressed as follows:

hy=hy—y—x0+h,; 1
v A xe —o, (1

o == O G m

g |

Fa Ul——m M J
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Here hOi is the distance of the i-th hydrofoil from the free surface /78

during steady-state motion on quiet water; ®ns is the effective angle of at-
tack corresponding to these conditions, Gg; T % * 9% (ak is the steady-state

angle of attack, a, is the angle of zero 1ift for the hydrofoil); y, y', ¢

0
and ¢' are the vertical and angular displacements and their derivatives with
respect to time; displacements which reduce settling and increase the angle of
attack of the hydrofoil are taken as positive; X is the distance along the

horizontal from the center of gravity of the vessel to the center of pressure

of the i-th hydrofoil; hbi and hgi are the instantaneous values of displace-

ment and velocity for the wave relief in the cross-section corresponding to
the center of pressure of the i-th hydrofoil; v, = v(t) = Vo T Vi is the

velocity of the i-th hydrofoil with respect to the water; Vi and vy are the

horizontal and vertical components of the orbital velocity of water particles
at points corresponding to the position of the centers of pressure of the
hydrofoils; v, is the velocity of motion of the vessel.

0
The 1ift increment may be represented in the form
oP ar ar aP aP orP .+ oP or
APzt oy - 0@ b9 b G Pl oyl oy s
Y 7 X 7 W ot i . 4 “ X
at dy [ Jy O/zw Oy Whoo, "¢ % oo, (2)
or
2
()P‘7 . {)-Cl_” QUES.' \
oy oh 258
Oy 05 <_ Cur L),
oy’ 2 Jz dy’ ]’
.2 P ~
Oy woSif %, - %y
Oy 2 gl iV g )
Oy @S (0 L,
ap’ 2 7 dy J’
2
oy Sy 9y
Oy o 2 on * (3)
O %S oy
OIZVIV 2 gy ?
9% S Ly,
v, T2 Cton !
opP, nS (708 oC
i i yi [ ’ . uyl r ' ’
B e R — o) G e — 4.
X

Assuming that
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my' = 2 AP,

i
mrig” = APy,
rud
(4)
we get the system of equations
Yo + @ b a e b ag e A
. (5)
byt boyy - @" -+ b - by == B,
where
!
ot %y %, LTy G
0= S’ A J(?):[ - éy ) (L 4-0,) 85
a. e x> G_C_g S
' e /) on by
ort y~ /00 ac, -
O3 = "o >~,J (‘0:“ T oy >(1 I- y) Sugs
= or? Y 60!1 XC 0<_,u . |
=g }("5,;" ) )‘50’
I
v gy 70C 6C .
— _QL 3 _y Ty e -2 (6)
b] = o >_.J( Ou (j‘);~) (l i Ux) S(,A’O’
b 28V So%
T gm Sy 0h by T
¢ r el
0t oy %y oc, - -
by = 5 . (KOD.‘ o —(7\5) (1=l o) S
b, SN Cy % _%y S x
i 2m >J an b do | 7070

(the subscripts are omitted here for the sake of simplicity).

The right hand members of the equations are determined by the formulas

i

;
~ oo o ~
o I\ s s s T s e |
A= 2m [Z,J an be hw >‘;l ox Y l dy lw (I Ux)“‘u' H

(7)

T [
oo %y st w o (% s e s
B=u [Z.J oh bo Py — ,_/;.;< Y oy hw)(l I v2) Soxo
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The components of orbital velocity are

7 4 -l . t )
== W A e - e .
v 4 0'08 cos ?ﬂ ( i T ’

21,

A TR Xy ¢
Uy = rwGue “W sin 2 (7 - e _r_) .
w (8)

The elements of the wave relief are

o x
Iy == —rW cos Qn(k— — —T—) ;

W
- ' (9)
hwa:fiﬁnQﬂ(k~~—l)vv

}\w T

The following notation is used in these expressions: p is the mass den-
sity of the water; Si is the area of the i-th hydrofoil; m is the mass of the
vessel; r is the horizontal radius of gyration of the masses of the vessel;

T, is half the height of a wave; Aw is the wave length;

_/f f x;

LY. L . .t
yo - Fv h[ - bi ) P r

(bi is the chord of the hydrofoil).

73 - k] - U

Zag x u
P o sm T U - il
o, l/ - v, 0 " vy

w

23 23
= 0 == v (vo <k <),
W

O

where ¢ is the velocity of motion of the waves, ¢ = 1.25/Ab.

Since the coefficients a; and bi of system of equations (5) and their

right hand members A and B are considerably dependent on displacements y and ¢,
the oscillations described by these equations are non-linear.

This system may be solved by numerical methods--the Newton method or the
Runge-Kutta method. The second method, although more accurate, is somewhat
cumbersome. Computational results have shown that the first method gives good
results for a sufficiently large number of steps per period (24-32).
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On the basis of the selected procedure for solving the system, two
c, oC, dC,
methods may be used for determining the derivatives é%ﬂw 7%5’ Tﬂ?: 1) these

derivatives should be calculated directly as a function of h , A, a, etc. on

the basis of results obtained in hydrodynamics [2], and then introduced into
the problem on oscillations in analytical or tabular form; 2) these same
quantities may be approximately determined as ratios of the increments to the

. . [AC, AC, AC, .
increments of the corresponding arguments \.Zh” 2&?‘i&§ for each step in the

process of calculation. In the given case, the second method was used as the
least cumbersome.

According to data in [2], the coefficient of 1ift which determines the /81
vertical conditions is

GGty T T (10)

Here o = 5.45;

Yo Lo Ay v 2yt D pe 2y7° - 0 (%),

! (11)
Acty — . Y% 4 ROTS
%o y T Ey T (12)
Y
g‘”—’l‘nLFJ--T\Fz- (13)
where
oo VU o (14)
IR I . 13, 5 5
%o g s T3 'ETS+1ET]D: (15)

k is the characteristic of curvature of the intake surface of the hydrofoil,
k = 1; & is the relative thickness of the hydrofoil;

£, = 0,57 4 0,257; - 0,05257; 40,0469, - 0,0257%," 4 002887 (16)

. : _ o OF,
F,= (t, -+ 1) 40,3757, + 0,375%, -1 0,257 + 0,2251,) 7;_1
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In equations (16)

v =V 41— 20, (17)

where

~ I
1I:=EX.

The value of Cyi is determined on each step with respect to the values
of hi’ o, and \f of the preceding step, and consequently ACyi = Cyi(n) - Cyi(n—l)
(n is the number of the step). The first derivative of displacement with
respect to time may be approximately written in the form

’ Yn = Yumy

Y= ""an (18)
while the second derivative may be written in the form
Y= 7T aye ’ (19)

Here Yn' Yao1 and Yoo 2Te displacements corresponding to the moments

of time ty, tl - At, t1 - 2At.

On the basis of this representation, the equations of motion (after ele- /82
mentary transformation) may be rewritten as follows:

A% RYs P -
Yot (1 + a ~2~> & Copr s g An U - Y, f2-- a, (Al)] -

At o A
- .I/II——I (1 - al -2 ) . (ncr;a: (\l)— }A (P,;,_‘]n; {2_[ y

Ar \ Al Ao o \ A2 (20)
yn-i-lbl _2_ " ‘pn—l-l (1 o _2.) = Bu ('x')- N (‘P/z [" - b-l ("“f)-ll -

A 9 Ar
- cpn—-l (1 - bﬂ >2_[> T U.bz(At)" _L !/n.-|b| 5 )

hence
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0o Aty
A, (1 -+ b, %) (A1) — B a, (——2— +

At Al)?
42— @09 (145, ) + o, -

Al At (A2
—~ Y [(1 —(Il ‘2") (l + b3_2—> + (13[7] —Z—]—

, At) . . M
-, (1 —+ b3 Tla, (A - (2 — b_1 (AN a, 5 -+ lpn_laS/\l

! = [ .
-{/n—}—l (_\[); )

Y At -
(1 4@ ”2') (‘. -1+ by TZ)” ayby =g "
(21)
AN L (A e
B, (1 +a, —g)(\r)» —Ab l(2~ b, (AN X

/ Y (An? | o
X (1 4 a —2-> E (14b1 BRI R l(l b _2—> X

At % AN
¥ <I +a; -2) daby Ty, (l —a by (AD® -1

N At
H 20y (M) by 0 i |- vy by AL

Thus the problem reduces to successive calculation of the quantities
yn+l and ¢n+1 from their values in the preceding steps (yn, Yn-1’ ¢n’ ¢n—1 etc.).

Consequently the initial conditions of the problem are indeterminate. We
assume that the boat is moving on quiet water up to the time t = 0. At t = 0,
the wave relief with ordinate hB = 0 arrives at the point corresponding to the

center of pressure of the forward hydrofeil (in the case of head-on waves) or

the aft hydrofoil (in the case of overtaking waves). This moment corresponds /83
to the zeroth step (n = 0). Displacements are equal to zero when n - 1 and -
n - 2. After determining Yo and ¢0, we introduce the resultant values in

formulas (21) in place of Yoo and ¢n—1’ compute the discrepencies on the first

1
step, etc. In this case, free oscillations will be present together with forced
oscillations during the first three or four full periods, although these free
oscillations will be quickly attenuated due to the effect of intense damping,
and the forced oscillations will remain to be determined.

Digital computer calculations have shown that non-linearity in the rela-
tionship between the coefficients of the equations and displacements has a
considerable effect on the form of oscillations even in the case of small
oscillation amplitudes in transresonance conditions. It has also been deter-
mined that fundamental oscillations with the period of the disturbing force
are accompanied by oscillations with a period which is a multiple of the fun-
damental. In this case the amplitude of these oscillations is commensurate
in certain cases with the amplitude of the fundamental oscillation.
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This method may be used in calculations which account for lateral os-
cillations (motion on oblique courses, three-dimensional wave conditions,
etc.).
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MOTION OF AN INCLINED WING CLOSE TO A DEFLECTOR
V. G. Belinskiy

ABSTRACT: The author studies the motion of a thin supporting
syrface inclined at an arbitrary angle to a solid deflector.
A solution for a wing of eliptical planform is found on the
basis of assumptions of 1ift line theory. Expressions are
found for the coefficients of 1ift and banking moment.

The motion of an inclined hydrofoil beneath the free surface of a liquid
was studied by T. Nishiyama [3]. The motion of an inclined wing with optimum
distribution of circulation was taken up by P. Zinchuk [2]. In this paper
we shall give the results of an investigation of the effect of a deflector on
the hydrodynamic characteristics of an inclined wing.

Let us consider the problem of steady-state motion with velocity Vo and
angle of attack o of a thin supporting surface inclined at an angle B to a
flat solid deflector (Figure 1). The problem is solved by the acceleration
potential method [1}.

2L \z

N -7 i ]
Q= — v (@ S0 =D —
@ 415‘3"\(){%(:/——:,} 2~(~l_ r =1
o7 (1)
_ (=g R Ep A D) ot (2 - Ta g 4 7-’—""-![_‘,‘___ 9z,
(g — )+ ;_/» 4+ A)? A (2 ;f(,' A A e fi _“
Here i _— - e
Figure 1. P Vi —ip w~w R CRNGE
o= V@B b Ay A+ Tp AR -F 2 R g F Aap o R
p = sin2py,
g = cos 20,
(0) 5 0 20 _ L.
YO FID =5 wegh h=g
- 2x =~ 2, —__‘22.
X= gz Y=s5ps =5,

m == 2H,cosb;

n==2H, sinp,
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For the velocity potential, we get the expression



where

5 2H
}:]0= ;‘1—30.

Subjecting expression (1) to the boundary condition on the lifting sur-

face
@, = — G whenz ==
@, when R 2)
we get a two-dimensional singular integral equation for the problem
+1 41 ;
A { [ (x— G) o 1J -
o = -
40 S:—S‘"Y() XZ(J——‘TI) ]/(Y’_b)t‘l}z(_/-‘ll)
. (g — Mg 4+ m22— (W 1 )2 — 2p2 (y — M7 -+ 1) (np -+ )
(7 — ny 4 )+ (P Tn)AR)R
(x -~
x[ , T : —-~1]1
L V (__1:_——5)‘-' -+ (_z_/ B I ) S (n]/; ¢ om)h (3)

(7 —-Mq A+ M Ap -+ (Mp - ik
W — g+ A O -f

(x -~ c) (np -y A ) -—]ld€d’f\.
((F —©7 4 (5 = g + 2 2 Gl 4 w47 107

At the present time, an equation of this type may be solved only by
numerical methods. To obtaln analytical results, we use the assumptions of
Prandtl's 1ift line theory.

Accordingly, we shall assume that

i N - - 4
[ vy@ds= 22T @) )

where

5 )
(= MS];
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Using expression (1) as a point of departure and taking relationships /86
(4) into consideration, we may derive an expression for the velocity poten- T
tial of an inclined wing of large aspect ratio moving close to a deflector on
the basis of assumptions of 1ift line theory:

+1

- 7» z~t
* o Tf(1){ o EY
KA Myt 2~ D) (5)
Oy = Mg - Zp A wm p - (2 - Eg - 23 4 ) _{/} &
(hy =g - Lp -+ Xn)2 - & - Tg -+ hup - Fa? '

!

=

where Eb is the potential for the corresponding two-dimensional problem.

Subjecting this expression to boundary condition (2) and relating the
value of ¢O to the value of the circulation on the wing, we get an equation

for determining the circulation on an inclined wing close to a deflector:

[y G, b Yf = [,__J_ .
Lo = 5o | T 0y

(6)

0% — 20 i+ qi® = % (u - TP—}'{ZI_}[M}-

T 2qp01 5 - "Uﬁ‘ﬂ+4hm

Here a2y is the tangent of the slope of the curve Cy = Cy(a) for an unbounded

fluid, where the theoretical value of this slope determined from the solution
of the corresponding two-dimensional problem is equal to 2m; y(y) is a function

which accounts for the change in a, in a bounded flow.

When g = 0°, equation (6) reduced to an equation for a horizontal wing
close to a deflector:

p— ‘}‘1
o an (!/){ .1 S e [ 1 o (j——m —_ ,,1{1 J,r )
I (e o 2% (1) '31_1 L(J~HT (R !

and when B = 90°, this equation reduces to an equation for a vertical wing
close to a deflector

1

+
1 (U); BUCHES 4)»(]) {O“ o t\ F I l_an) - (1/ ‘”] 4 //) a’]}

Let use the notation G(y, n) for the kernmel of equation (6). Let us consider
the integral operator
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L = S () G (. ) dn, (7

which may be represented as the sum of a symmetric term and an asymmetric term:

LE) = L @) + Lo () == F@ IO L@-Le=p ©

We may write
+1

Ls(y) == o 5 T () Ge (v, 1) d;

'_
L) - ST (1) C. (g, W) dw),
—1

where

G, 7D - _ Gy W H- G( Sd, M) G (g n) - Gy M) MQG~(_~—“U~—7—Q—
The kernels GS(§; n) and Ga(;; n) may be treated in turn as a sum of

symmetric and asymmetric terms:
GG -Gl + G, 0 W

Gull, ) == Gad ) - GG ), ©)
where
- _-\ ] PU— - = - _— —_ —_
G, W =g G )+ G(—y, ] —14~|'G(y, — 1)+ G{—y, — )]s
R 1 - =, - - H - - — -
G oM =70, )+ G(—y ) — 5 GG —n) -+ G(—y, — )
R (10)
Gas @ M = 716w, W) —G(—g, W] -+ 7 16F, —7) —G(—i, —
T | -~ = - -
Uaalyy ) == 7 (G (@, M) — G(—y, )] — ~4- (Gly, —w) —G—g, — ).
Separating the circulation into symmetric and asymmetric terms
I'(m) =T @)+ Fa @), (11

91



we get

we take the ratios of the functions 2.

92

+1
Le@) = g | s (-G @ W +Ta (-Gaa 0 1 4

—i

25

L) = 5 S Ts ()G, (o M) + T () Uos @, W)
—1

The function Y(y) is treated analogously:

Y () = s @) - va ().

Thus we arrive at the system of equations

+1
B - w0 e+ g | 00,5 +
-1
+ T (0) Gg (v, W1 dn
41
| [T ) Gsly, ) +

—1

L b @
Vg 2

+m®@@ﬂwa}

+1
B " - ! 5o = =
ra@)xﬁﬁfwam{a+gaflumw%sw»u+
’ —1
+Ta () Gy, W ) -1
_ At
tsly) | = - -
== m)“'é‘:( S T's(y) GaS.(U» ) -+

+h®%@%ﬁ}

(12)

(13)

(14)

Let us give one approximate solution for this system. For this purpose

Pe (0) and 11_“(2)
A (y) A

‘p (—) D v (y - —
sY eV — % ta ) = b_yl/l—_y2

D) Ay

. in the form

(15)



where

20 b= 4
i Ve (B). 7, ¥a B)-
We shall seek the solution of system (14) in the form

L@=a4aV1—p

—— (16)
La(y) =By V1=
The solution of system (14) with regard to expressions (15) and (16) /89
gives the following values for the constants A and B:
a.b b a,a anb
(Igﬂa [1 [‘ ot e '—‘":;' Lo J -i 'Lz‘ C"{_Af Lo — 'g' C;]
A== , ) . . —
ap a.b ana )
[+ b AR AR R
nllb ; {'Inl) I3
-y f [‘70(1;3_‘ Ty obs
\ 7
b ]
?%(-’-a[ann:r"“ ] + % [1 + o —-q—:.g]
= T ayb T
l:l‘i‘ggg.:" 4 gj'[l + - l C1‘— 1) C:}}
of
[ -2 anc r,[(’o {ZL 7 C‘,:,
1 1 3 .. , 1 17 ., !
where A 1‘_'2T2""l?i'4'Q’“”‘BJT'“_[ld g st h —
303 onles
' ——%-sin" ']TG ——[031— — a5 sin?p - Gsintf - 3sin’ [‘)}13,
1 . 3 . g e o — 2L sinp -
Engg:———-rynﬁr-{ -gsmﬁ—~sm ) ] 6T S '
. - 61 . a3 .
-+ ?Z sin®ff — —g sin® ﬁ] i +[ 61 SINB— - sin®f-1- —~sm" [']c9,
3 1, 5 an o e
Li=1—gt— [—4— + & sin?fp — 4sin’ {‘)] T
5 27 oo 87 4 Asin® 8.
'_[’GT — g sin? P -} —g-sii p— 4sin®f |75
9 . 1 a1 . 4
{r=1— % 72 — [—é + 7 sim? D} 71— [—— gy g Sin? p—- (18)
21 . 4nls [ 9 481 si 8 -——sms
~—7rsu1ﬁ]1 ""[64 64- T sin 16 4+ iz
. . 5 9 .
Lo =— 7:—3111[5-':3—- [% sin f -+ sin? [5] ° - [— 5 sinp -+
87 . 21 . .
4 e sintp— g-sin® B [ -sinp — -sin? B o - sin B
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In these formulas T“‘1/735Et;—{—-3;qm /90

The coefficients of 1ift and banking moment are defined by the expressions

£
Cop = M| Ts) dy;
2 (19)

1 .

- e = R = - e e e —
me; == (12_ 7\0 S - Ff. (_l/) dy- C""r/ /
-

8 008} ] - ,[‘
R R /
4,0--~——~i
I 30 e L S
- B,deg
Figure 2. Figure 3.

Taking equations (16) into consideration, we get

!
Cz; == bl ﬂ}»c"l
1 - D
C‘:rz;‘H = W ﬂz«\)u,

where A and B are defined by expressions (17).

Given in Figure 2 is a graph of the function C° as related to the angle

U'I:_‘\IQ

of inclination B for a wing with aspect ratio A, = 5, and relative distance

0

from the deflector Hb = 1.1,

An analogous graph for the function C;x is given in Figure 3.

h
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CALCULATION OF THE CHARACTERISTICS OF A
LIFTING SYSTEM WITH ELASTIC ELEMENTS

B. S. Berkovskiy

ABSTRACT: Data are given from influence function calculations
which characterize the interaction of elastic and inelastic
elements of a lifting system of infinite span with each other
and with a deflector of free surface.

We shall define a lifting system as a set of closed or open lifting ele- /91
ments. In this case a wing with leading and trailing retractible flaps or a
wing and tail assembly are systems of lifting surfaces. The interaction of
the rigid elements of the lifting system with each other and with the boun-
daries of the flow causes considerable changes in the force and moment char-
acteristics of isolated surfaces in an unbounded fluid. Elasticity may also
lead in its turn to considerable changes in the aerohydrodynamic coefficients,

a fact which may be used for controlling the behavior of the characteristics
in which we are interested. From this standpoint, investigation of the motion
of a system of contours with elastic elements and the motion of completely
elastic systems is of both theoretical and practical interest.

In this paper, solutions found previously! are taken into consideration
and data are given from the calculation of influence functions which charac-
terize the interaction of elastic and inelastic elements of a lifting system
of infinite span with each other and with a deflector or free surface.

The results may be used in the calculation of bodies in an infinite or
bounded fluid: A wing with passive mechanization with regard to structural
elasticity, an aircraft 1ift system, the "ducts" system, the tandem polyplane,
and also in the design of special autostable lifting systems.

The change in properties of an individual element or of the lifting
system as a whole may be characterized by influence functions--interactions of
the form /92

(n

where P is the state to be considered; PO is the known state of the element or
system.

1B. S. Berkovskiy, reports at the 17th Scientific and Technical Conference on
Ship Theory (Krylov Lectures), Leningrad, 1967.
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In the general case, the state is characterized by a number of parameters:

P =Pp).

(2)

SipnR=+ 1

stgnR=1

Figure 1. The Influence Function of the Boundary for an !lsolated
Elastic Contour Where sign Fr = -1 (Solid Lines) and sign Fr = +1
(Broken Lines): 1, H=0; 2, H=20.1; 3, H= 0.2; 4, H=10.3;

5, H=0.5; 6, H=1.

In our specific case, the force characteristic P is determined by the /94
parameters of distance from the boundary h, rigidity EI, relative position and

the ratio of the dimensions of the elements d which take on both intermediate
and limiting values:

P=P(h £l d), (3)
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i.e. the influence function of the deflector is

'q) == “q) (ll, El, d)

Figure 2. Influence Function of a Deflector for Element No. 1
Where sign Fr = -1: a, t=1; b, t = 2; c, t = 3 (The Designations
For H are the Same as in Figure 1).

The results of investigations for an isolated element are shown in Figure
1. 1In the case of a rigid plate in an unbounded fluid, ¥ = 1, and in all other
cases 0 < y = 1; the coefficient of 1lift is Cy = aw¢aef.

The influence function of the system is determined from the influence
function for the element:

~7
P 'n _¥~ \ tinkilz\l.l
ox _ Fx» 1
Y=g e T
1N p (4)
+2; li,; in
i

97



where

£, =
in = T
an

A‘i

kin ==

P

n

» =23 when ;. p

(n is the index of the element, ki is the chord of the i-th element).

%'11“_ ' I

20y

Figure 3. |Influence Function of A De-
flector for Element No. 2 Where sign

Fr = -1 and t = 1 (Solid Lines),

t = 3 (Broken Lines). The Designations
for H are the Same as in Figure 1.

For closed equally large plates,
the influence functions of the
elements are given in Figures 2-3,
and the influence functions of the
system are given in Figure 4. The
following notation is used in these
figures:

Bk kY,
H = —gE7T /]1 == gg“,
~ I
H = & sign o= 4+ 1
beneath a free surface; sign Fr = /96
-1 above a deflector; sign R =
+1 and sign R = -1 correspond to

displacements of the flap on the
trailing and leading edges; a, are

the angles of attack of the edge.

Analysis of the results leads
to the following conclusions.

For an isolated elastic element
in an unbounded fluid in the case
of a flap in the leading edge
(sign R = -1) there is a drop in
1ift as compared with a rigid plate
due to a reduction in the local
angles of attack in the direction
of the trailing edge. Consequently,
we may expect a shift in the center
of pressure toward the leading edge
of the wing and a corresponding
change in the coefficient of longi-
tudinal static stability amz/acy.

The reverse process takes place in the case of a flap in the trailing edge

(sign R = +1).
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The 1ift of an elastic contour increases less than for a rigid contour
close to a deflector when sign R = -1, As the distance to the deflector

WZ"". T VS

~

Figure 4. Influence Function of a
Deflector or a Lifting System Where
sign Fr = -1 sign R, = -1: a,

t =1 (Solid Lines), t = 3 {Broken

Lines); b, t = 2 (Designations for H

are the Same as in Figure 1).

decreases, relative losses increase
due to a reduction in the ratio
dy/ah --the quantity which charac-
terizes the margin of static
stability of the wing with respect
to height. When sign R = 1, the
1ift of an elastic contour and the
quantity 9y/dh increase with a
reduction in the distance to the
deflector in comparison with a
rigid contour.

Beneath a free surface in the
case where sign R = -1, there is
a reduction in the 1ift and the
quantity 9y/dh as the surface is
approached. When sign R = +1,
there is a transition in the
results to the case of an infinite
ftuid as the load is increased.

General conclusions on closed
and open supporting systems may
be drawn on the basis of those
enumerated above. Some additional
conclusions are of interest.

A deflector has a weaker ef-
fect on a rigid horizontal element
of control or mechanization with
lower power percentage wise. For
instance 20% of the control sur-
faces which produce 5% of the load
in an unbounded fluid show prac-
tically no increase in load close
to a deflector for the heights at
which the system is operated.
There is a sharp increase in 1ift
on the remaining control surfaces,
i.e. the relative loading of a
20% control surface (aileron, ele-

vator) drops appreciably close to a deflector (by a factor of 1.7 when hS =

0.2).

yst

Consequently the percentage ratio of the areas of ailerons, flaps,

elevators and wing for ground effect machines will be insufficient for pro-
viding the same control efficiency as compared with aircraft in an infinite

fluid.

Accounting for structural elasticity requires additional determination
of the ratio between the areas of elements.
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EFFECT OF PLANFORM ON THE AERODYNAMIC CHARACTERISTICS
OF A WING CLOSE TO A DEFLECTOR

A. N. Lukashenko, Yu. |. Laptev
and A. G. Novikov

ABSTRACT: The authors describe the results of experimental
investigations of wing-plates with various planforms in a
wing tunnel. Relationships are given for the coefficients
Cy = f(a, h), C. = fla, h) and k = f(», h), as well as an

equation which summarizes the results of the theoretical cal-
culations.

The experimental data given below were recorded in a T-1 wind tunnel at /97
a wind speed of v = 30 m/sec, (Re = 4.6 + 10°). The working section of the
wind tunnel was open. The flow turbulence was € = 1.25%.

Investigations have shown that a solid fixed deflector has little effect
on flow obliquity, and therefore it was completely permissible to introduce
conventional corrections for flow obliquity and the effect of jet boundaries.

A more complex problem is the violation of boundary conditions on the
surface of the fixed deflector which apparently results in somewhat of an
elevation in the measured drag forces Q, particularly when the distance h be-
tween the wing and the deflector is small. The distances from the deflector
were measured from the trailing edge of the wing in the root section,

The wings were made in the form of metal plates of thickness ¢ = 2%. The
geometric characteristics of these wings are shown in the table.

The aspect ratio of the wings AO was varied from 1.25 to 3 since these

quantities were of the greatest practical interest.

According to curves for Cy = (o) (Figure 1) there is an increase in the

lift coefficient as the wing approaches the deflector for all angles of attack!.

The best wings with respect to lift-drag ratio k (Figure 2) were those
of trapezoidal planform. Maximum lift-drag ratio is reached for all wings at
an angle of attack of approximately 4°. As h is reduced, there is somewhat of /100
a reduction in the angle of maximum lift-drag ratio, and this angle reaches 3°

for some wings when h = 0.1.

lcurves are nmot given in this paper for CX = f(a) and sz = f(a).
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T | Planform -2 B 5 E s |8 o 58138 - .
B 28 sl SR B ES |y T o8
= S REa DA R RIS B P

! 450 | 350 | 350 10,1575 1,951 — -

2 r l 460 | 230 | 230 {0,1058 2 |1 — - -

—t 690 | 230 | 230 [0,1585] 3 |1 - =] =

!

4 460 | 275 | 185 [0,1058) 2 |1,485 [21950"| — | — i

5 [ ﬁ 690 | 300 | 160 |0,1685 3 |1,875 [21°50/| — | — |

1. :

6 A 690 | 230 | © 0,1585; 3 —  5%°100 | — — ‘
7 (b 460 | 293 | 0 0,1038! 2 — —_ 230 | 145,5

Calculation by formulas derived by A. N. Panchenkov and A. I. Yukhimenko
in [2] shows satisfactory agreement between theoretical and experimental data.

Theoretical curves for Cy = f(a) are shown by the light lines in Figure

1b. The calculations were based on the formulas

Ya,,
C!J =t omrmp T 'il,zlm—“ o
Cutha 1+ e
2

Cot = 5 Lo

G=[14-C, (%) Lo

& = 1 — % ©2 —0,257] —0,0625%] —0,0467 — 0,0237v1°—0,0188¢1

Y=14 124 0@

T == ]/Zﬁn-;- ]—-—— 2;2, Ty, == 1/;}171;(:; "‘i‘—T —— 2—]—10
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Here h = h/bav; HO = h/27, where bav is the average chord _qf_:c}hgﬂ\nzi'l_lg;ﬁ} »'1@5 /101

TN ST A

half the span of the wing. “'
TG VT 7 I ‘47 77, )

T R /;fé/\\ o
%
/7/

ARSI RS R

g9
Figure 1. Curves for Cy = f(a): a, Model No. 1; b, Model No. 2; ¢, Model No.

3; d, Model No. k; e, Model No. 5; f, Model No. 6; g, Model No. 7 (1, h = 0;

2,h = 0.5; 3, h=0.3; 4, h=0.1).
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Figure 2. Curves for kmax = f(F}. Curves 1-7 Correspond to the

Numbers of the Models in the Table.

The functions

Cy (o) = ¢t (b = 0,2599);
1

C(l) = ¢ B (a, = 3,847)
with regard to arbitrariness of the aspect ratio.
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FLUTTERING WING CLOSE TO THE SURFACE OF A LIQUID OF FINITE DEPTH

A. N. Lukashenko

ABSTRACT: An expression is derived for the influence function
of a deflector ¢ = Cy/Cyoo for a fluttering wing close to the

surface of a liquid of finite depth. The problem is solved

by the method developed by the author in his paper on unsteady
motion of a wing close to a deflector with-low Strouhal
numbers, and also by the method of analogy with the problem
of a fluid of infinite depth.

An expression was derived in [3] for the singular integral operator Ly
for a fluttering wing close to a deflector with small Strouhal numbers k:

+i

Ly = %l Y 1 (€) [}.E- + G — s)] ds. (1)

—s

The problem of the motion of a wing close to the surface of a liquid of
finite depth may be solved as follows, using the method of solution proposed
in [3].

The regular component G(x - s) of the kernel of equation (1) in this case
will take the following form [2]:

when Fr - =«

X-—5
Gh’li. (X —8) = — —— -+

(X — 8)2 -1 16 (g — Ty?

—2hRy 10 T i
42 X s D o~ ) _ i, (3 - 5) dD;
d ch 204,

when Fr - 0O

X ~-8

Gig, (5 —9) = = g 16 gy i

hh,

—2 g‘ R sh2 9 (o — ) gin 2, (x — 8) dh.
. sh 214,

Here Hb is the relative depth of the liquid, Hb = hO/b; h is the relative dis-

tance of the wing from the deflector, h = h/b; b is the chord of the wing.
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Without disturbing the generality of the problem let us consider the /103
case Fr - 0 (Fr - = may be derived analogously without particular difficulties).

The operator Ly may be presented in the form of two components:

Ly= Lyy -I- Ly,

(2)
e
where LOY is the singular characteristic operator, Lyy == -,_)-;j g{(_s—)sds;
-1
Ly is the regular integral operator,
N
Lyy == <~ N oo TS
S S Vil [ (% = )t b 16 (g — Fe)?
© - L (3
— QS £ ?M‘ s 210 — h)_ sit A (x — 8) dA | ds.
sh 2al,
0
We transform the kernel of expression (3) as follows:
G (x —8) == — Re fS M-l -t =),
¢
P . T e‘“”‘_h° sh2 A (/}},— HY i3 () gn
'HAZRel,Y om0 € b == (4)
0
= — Rei gD G, T ) 940,
b
where
I -~2%h m T
- — 4 (ho—-hiA € +sh 2h (’10“"4/{)“ B
DAy =¢ + 2 2k, (5)
We may then write equation (3) as follows:
Liy = — i S D@, Ry By e ™ H, (2) db, (6)
0

where Hl(A) is N. Ye. Kochin's function,

£ _
H, (A =5‘ v1 (s) e™ds.
ht
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Using the operator Lal in the class of functions cg and integrating in

the interval from -1 to +1, we get from expressions (2) and (6) /104

+1 -+ . .
S o () dix = 5 o (%) w,;m;g DO T, YH O P ()i,
-1

-]
9 (/T8
POy =—= S l/lliS VS

-1

The expression for the influence function of the deflector y = Cy/Cyoo

determined in the first approximation by using Kochin's functions takes the
form [3]

1

AP = e

S D (0 Fro, B 1o 1) P () dA,

O Ho(y

After being determined
-1

Ho (1) == | w10 () ™d;

—!

+1
Hy (0) == J Yio (x) dx.
At

Here Ylo(x) is the distribution function taken from the problem for an

infinite fluid [3].

P 4-x T—s @,
10("') = = /1-—~x§ §/1+SS =ds }
P A= ST
- ik LC "z‘ DR '}‘ In "J‘41 Vit% — &k afctg ‘%/ l—:;v;ll,

where

-1

AI“S V1+s9° 5

C is Euler's constant; ¢Z is the derivative of the velocity potential.
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By way of example, let us consider translation vibrations of the wing.
Then ¢ =1, A, = 7.
z 1
Leaving out intermediate steps, we write the expression for ¥ in the

following form:

Ll Tl
R
where /105
Apy == -2B S DRy, Ty 10dh 4[1;513(;., T Ty T dns
0 0 A
(7)

B—=1 ‘I‘ ‘:f“(c '!'" jg ‘l‘ In k)

(IO(A) and Il(A) are Bessel functions).

It is shown in [1, 2] that a correspondence may be established between

the functions GFE- (x - s) for a liquid of finite depth and GH-(X - s) for a
0
fluid of infinite depth, and that the final result may be derived by appro-

priate substitutions in the solutions.

S M

Im/b’?

Curves for the Function Im(y) =
f(h, h]) when k = 0.05:

1, h, = 0.05; Z,F] =0.1; 3,
h, = 0.2; 4, h, = 0.3; S,F] = 0.5,
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Using this circumstance, the integrals which appear in expression (7)
may be represented in the form of series with respect to the parameter e which
accounts for the finite depth of the liquid rather than in the form of series
with respect to t (as is done in [3]). Extensive tables are given in [1] for

e as a function of h, h, and the Froude number.

0
Then
Db Ty, By Iyl = ee g el e
. v TR DES LA D) $ U] 8 2 8 3T vy
[
D, B B Wy ] b e, — 10,0625, -
v, Hg, "7:“ [4 s "é“ 81 - ——4“ Cg = U, U-«OE3 T e e e
0
The final formula for ¢ will take the form
\ 1 .k ——4;;_»{— 1‘,50;_—_—0,2_.“\?3

S P L e & S
I 4+e — & e, - _ii. [ ! ( 12y —- 711 -1~ ,;. ?3)

Curves {or the imaginary part of the function y (see figure) show that
the effect of variability in the process decreases considerably with an in-

crease in relative distances h and hl’ where h1 = hO - h,

The function ¥ takes the form [3]

k 4oy - 1,58y - - 0,250;

Gom Vo b e
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CRITERION FOR AUTOSTABILIZATION OF THE MOTION OF A SYSTEM
OF TWO WINGS CLOSE TO A DEFLECTOR

A. N, Golubentsev, A, P, Akimenko and N. F. Kirichenko

ABSTRACT: Parameters are found for a system of two rigidly
interconnected wings such that the motion of the system is
maintained in a state of stability or asymptotic stability
when subjected to perturbations which are given in a finite
region. The problem is solved in the nonlinear formulation.

A system of two rigidly connected wings moves at a constant horizontal /107
velocity close to the interface between two media (Figure 1). The ox-axis lies
on the interface between the two media; the oy-axis moves together with the
system and passes through the center of gravity of the system at every moment.

Yy
1
%
p AL
1 &
Uz /E?/
e B B A O
=7 ’
éré EN
M9
RN BNNIPRIR SO
14 X
Fig. 1. Schematic Diagram of the System of Two Rigidly Connected Wings.

\]

The centers of gravity of the first and second wings lie on the lines of
action of the corresponding lift forces I1 and I2 (al and a, are the angles

between the chords of the first and second wings and the axis of the vehicle),

The equations of motion of the system with regard to the effect of change
in the angles of inclination of the chords of the wings to the ox-axis and dis-

regarding the change in vertical displacements in disturbed motion take the
form
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m_z,'. = [Cy(h, @ F s, y H Lsing) S 4 Cy (A ¢+
ey, y 4 £y Si0 ©) Sl ——"— - mg — By,

(1)
"‘;P.”: C, 0 @y, y a1 sing) Sy — Cy(hy, ¢ 40y, y—
— 1, SinQ) Syls ~+ 122 (A, @ + 01 y - Lisin @) by Sy - me (b, @

+ @y, y — lysing) b,S,) _gg_ - Mygly, — 1y Gl - kz(p,

where 9,1 and >‘2 are the aspect ratios of the first and second wings,

respectively; Cy is the coefficient of 1lift of the wing; k1 and k2 are the

damping coefficients of the medium.
The equilibrium position of the system may be determined from the follow-

ing system of equations [1]:

Cy7, 00, o) S - Cy (g, g, 1) S, 5 ; = mg;

Cy(hy 0y 1) Sili - - Cu (ha, 0 B2) Syl b m: (o, g, fig) 84Sy 4

_l- Il ()\‘, Uy, iU/ UZ*JZ = ()‘([,Oil - 10 _)l‘_) .?_.__ 3
p=0. (2) /108

The equations of disturbed motion are then written in the form

A./ Ay -1 Ayl b A lphy - Ay A(P + A Dgly® - Al b

A AAYE e L AJ~

AG = BiAG -+ BAy + BAGAY -+ BiAg® b BAGAY? -1 B |-

1

o ko A *
4 B A - g, 3

where
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Let us find the conditions which must be satisfied by the parameters of
the given system so that the requirement

ol <
Ay )] < lg—Isin g = y;
lim Ay{fy - 0;

t->co

lim A(p (/) - 0.
1>z

(4)

R e

is satisfied for the coordinates of disturbed motion.

The physical meaning of the conditions in system (4) is that the vehicle
does not collide with the interface and that asymptotic stability of disturbed
motion is maintained,

Let us write a system (3) in normal form. For the sake of convenience,
we shall use the following notation for the coefficients An and Bn

Xy == Xy}
Xy == Q21X - A%, -+ gaxy - A21x] - AOSXs 4 A

(5)

1{5— A25/\'3,\'1 “f:‘ AQGXa«Vi;

-
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x3 = X4,

. 2 2 . 3 .
Xy = anxy F Qu3X + Quuxa - Anx] 4 Apxs 4 Awxs b (5)

.2
~i" A45x3x1 -+ A,‘Gxaxl.

The necessary and sufficient conditions for asymptotic stability are
readily established for the linear approximation of system (3):

@y, < 0 as < 0;

Qa1, Q43 — O304 > 0. (6)

Let us use N, G, Chetayev's method [3] to construct a Lyapunov function
in positively defined quadratic form:

4
U (x) == E Cijxixg.

£y =) (7)
The coefficients Cij are determined from the condition
4 1 4
Ot . LN Y9
25 Cuny Y, Xy =— 3%
ij=1 E==] [ (8)
or from the system of linear algebraic equations
4
ch‘-,-azh == —— Oy U, k=123 4.
i (9

Here A = 0 for those subscripts which do not appear in system (5); éij is the

Kronecker delta

6“2{(13 t#/

I =

113

/111



Let us determine the value of the coefficient C for which the set

{x:0(x) =C}

satisfies the condition

{x:U(X)ZC}C{X:lxll<!7; %] < (:;}

(10)
This value of C is determined as follows [2]:
TR
M !
C=min{
924, (11)
My *

where A, = det ||Cij|[; M, are the complementary minors to the k-th diagonal

4

element of the matrix,.

k

When the inequality

av

P 0

(L" )(5 < (12)

is satisfied in the region
Inl<i=x1  |%|<®=7%
S 13
CAM, A, ' = (13)
i< =2 lal< =

then requirement (4) is fulfilled if the perturbation at the initial instant /112
satisfies the condition
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4
Cx.(Ox (0 <«<C..
2; w05 0 < (14)

Condition (12) takes the form

[N

4 4

Ci;xi(Di X) = — g‘ x:r’ +2 Z Xx; [X? (C[QAQ, +- C,u;"l“) +
ved ~ et i1

=1 21 = t=

4
— y 122
i- i, 1

.

+ 3 (Ci 2Azs + CigAss) -+ 23 (Ciadlay -1 CuaAss) + xs%, (CoAos + CinA) +

4
4 %5x1 (Ciados -+ CuA)] < Z % {2| Cign + CusAur| - 2| Coadlos 4

ix=]

+ CuAiz| 4 2x3 | CiaAos -+ Ciadia| 4 | Ciolas - Crsdas| - (15)

4
-}- 2:{;‘5! C,-g/];,c, -%— C[;A.;G i e l} 2: x% < 0 (L> j-_’“ 1: 2! 3: 4)

(£
when x # 0, where

O, = 0; D, (x) = Aorxt 4+ Asxi - Asgii 1 Apsxgxy -+ A 33"?'»
(D3 = 0; (D4 (A) == A“.\.ﬁ? ~,L~ A;,}X’?j —[- /l“xg -}- A,;5X3xi —{— A;L‘,sz%.

Inequality (15) is satisfied following the system

2| Cipdar -1 CiiAn ] - 2| Cpdos - CuAa] -+ [Ciados + Cralis| -
— ' 1
+ 253 (| Cindas - CosAlgy | 4 | Cizllas -+ Cisdisf) < —=—.

4x;

(16)

Consequently, if the parameters of the system satisfy conditions (16),
then the system is autostabilized in the sense of relationships (4} for per-
turbations bounded by the region of values (14).
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ON THE FRANKEL PROBLEM FOR CASCADE BLADING

G. S. Lipovoy

ABSTRACT: The author discusses formulation of the problem
for near sonic flow around a vane cascade assuming compres-
sion shocks.

The problem for near sonic flow around an isolated blade where there is /113
a shock wave is outlined in [4]. Formulation of the analogous problem for
cascade blading is considered below.

It is known [1,3] that at gas flows greater than a certain critical

value Mcr , cascade blading shows a series of compression shocks with a fairly
1

complex structure which varies with a change in the mach number M. At certain
values of M, the compression shocks have a finite amplitude, but they may
become infinite with an increase in M, In the following discussion we shall
limit ourselves to flows with finite compression shocks (Figure 1). For the
sake of simplicity, we shall further assume that the compression shocks are
rectilinear,

In order to explain the singularities of
the stream function ¢ in near sonic flow, let

us first consider vortex flow of an incompres-
//////- sible fluid around the cascade. The complex
g i potential and associated flow velocity (3] take

Ve /////w-aw\\\\\<i the following form:
\ -
\ s S -
\\>///\/
yd
b r
u'7—*—Uaoz-%ﬁl.lnshi,z—}—const; (1)
Fig. 1.
Vo= oo b L off
U="0eg } QniCthTz' (2)
Using the notation
S gy =835 Ty b g B
we get f. T /114
E= Ny TN, (3)
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Then the expression for the complex potential in the hodograph plane
will be

vt o, — = [ = =
Wz'z‘l,?ln(v _ ”1)‘27,<01 =N ‘—tT—) In(® —uv,) - const.

(4)

In the general case, the complex potential in the hodograph plane is

D, 4+iQ, = = Dadilley o~ =
w="t0ne 5y EnE ) 4 P,

(5)

where Q1 5 is the flow rate; Iy o are the components of circulation. The
r >

function F(v) has no discontinuities within the hodograph. Using the nota-
- = iw iw

tions v = Vl = ple" 1,.; -V, = pze— 2, the stream function may be rep-

resented as

V=olng, 4-plng, -+ 0(0). 6)

The function ¢ will have the same singularities in a gas flow. Let us
recall that the region of the hodograph has an infinite number of sheets. As
is conventional, let us consider only the part of this region corresponding
to a single step of the cascade. For the sake of simplicity, we shall assume
that this part of the region is one-sheeted, i.e. this region does not con-
tain a point v = 0 and branching points. Then let us examine gas flow. We
shall assume that the function y satisfies the equation (Trikomi-Fal 'kovich

gas)

(7N

where n is the known function for the modulus of velocity v;

3 YE—o z
a v 3.
1]=(—2—S' av ﬂd(_’) '

v
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6 is the angle of inclination of the velocity vector.

We assume that the velocity potential ¢ exists. The problem is to find
a solution for equation (7) in region D (Fig. 2) with singularities of type
(6) under the following boundary conditions:

P=0 or AG,aB,bC,...; (8)

gg’:o or AdA'.BbB',...; (9)
DO = P (O, — "ﬂ),'(?n =a,b,c,...}% (10)
U, 0,0) =1, 0 o e, bib,, ..., (11)

where 1 (6) are given functions; the hodographs of arcs AG, azB, b2C are
n

given, and the hodographs of arcs A’az, B’bz, C’cz... are found during the
process of solution as the locus of points of the hyperbolic part of the
plane analogously to the problem for an isolated blade [4], where ¢ = 0.
Points ajs bl’ cy ... are the points of intersection of the characteristics
passing through the points A', B', C'... with the On-axis. The singularities
of the function y are located at the points (61, nl), (62, n2), correspond-

ing to the values of velocity before the cascade and after the cascade.

Let us compute the values of the
constants o and B appearing in equation
(6). In order to do this, we make the
transition from the plane 6, n to the
8, s (where

3
2 = .
s == 2 ] and introduce
A
/ ) polar coordinates
/,
9—@@:@ﬁhqjs—ﬁJ=qﬁmq?

in the neighborhoods of singular points,
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Using the relationship between ¢ and ¢ according to S. V. Fal'kovich's
equation:

E)E,: E 175 Qy [2lvl 3 \/3 5y
o0 (25) 6%’@20:""6(73) do?

as well as the relationships

@dcp =T gﬁfvf—e/d@ +i%2 p) =0
(13)

(where the contour of integration should include both singular points), it
may be shown that

-—-~;p::-—~——-—-—— P
(0 —2y) 2n (;— 52>1/3 (v —ws) (14)

This problem may be solved by using the following method of successive

approximations. When Tn(e) = wn(e, 0) are given on segments aal, bbl’ ccl,

...we find the first approximation w(l) in the elliptical part of the region.

Then we use equations (9) and (10) to solve the Kauchy problem in the given

region: aA'az, bB'bz, cC'cz.... As a result, we learn the value of ¥ on
the characteristics which pass through points a, b, c,... Having these

(1)
quantities, and using the value of —g%—- , determined earlier, we get new

values for Tn(e)- The questions of the existence and uniqueness of the

solution remain to be studied.
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CHEMICAL COATING METHOD FOR MAKING THE LAMINAR SECTION OF
A BOUNDARY LAYER

L. F. Kozlov and A, F. Mozhanskaya

ABSTRACT: A detailed description is given of a technique
for making flow in a boundary layer visible by a chemical
coating method when testing models in an aqueous medium.

The chemical coating method is based on the difference in the erosion
intensity for a chemical applied to the surface of a model in laminar and
turbulent flows. Experience has shown that this method is extremely simple
and its results are reliable. However, the given method has not been ex-
tensively used, apparently because of the lack of a detailed description of
the technique involved.

Biacetyl of hydroquinone C which is a complex ester of diatomic

1OH1004
phenol is recommended in the case where the chemical coating method is used
as an indicator. Biacetyl of hydroquinone in pure form is a colorless, odor-
less crystal which is insoluble in water under ordinary conditions and dis-
solves in acetone in any concentrations. It is synthesized by esterification
reaction between hydroquinone C6H4(OH)2 and aceticanhydride (CHSCO)ZO'

Acetic acid is formed first during the reaction:

(CH,CO): O - H.O -» 2 CHL,COOIH,

which reacts with hydroquinone to give biacetyl of hydroquinone:
2 CH,COOII -|- CgH, (OH), 2~ C,oH, 0, - 2H 0.

The reaction takes place in the presence of sulfuric acid which acts as a
catalyst.

Biacetyl of hydroquinone is prepared by adding two parts by weight of
acetic anhydride and one or two drops of concentrated sulfuric acid to one
part by weight of hydroquinone. The reaction is exothermic and takes place
vigorously and therefore should be carried out under an exhaust hood with

122
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constant agitation of the mixture. The hydroquinone is completely dissolved
by the reaction, and the beaker in which the reaction takes place is filled
with a hot dark yellow liquid with the acrid odor of acetic acid. Upon
completion of the reaction, the solution begins to congeal, forming a thick
gray crystalline mass. After solidifying the crystalline mass is thoroughly
washed in water until the acetic acid disappears. The washed crystals are
dried in a drying cabinet or in the air.

~
[
-
[¢]

|

If the initial product were insufficiently pure, the resultant crystals
of biacetyl of hydroquinone have a grayish tinge. In this case, the result-
ant biacetyl of hydroquinone should be recrystallized. For this purpose,
small portions of the compound (10-20 g) areé mixed in a chemical beaker with
a capacity of approximately 500 cm3, covered with water and boiled. The
boiling solution is then quickly filtered through two or three layers of
gauze and the undissolved crystals are boiled again. During solidification
of the filtrate, crystals of biacetyl of hydroquinone settle on the bottom
of the beaker. After drying, the biacetyl of hydroquinone recrystallized in
this way has the form of small light snow-white crystals and is suitable for
use.,

The quality of the results of tests is dependent to a considerable
extent on the state of the surface of the model. The model should be care-
fully made and should have a fifth-class surface finish (GOST 2789-59). The
nose section of the model should be finished with special care. The surfaces
of wooden and paraffin models are finished differently. Wooden models are
coated with a black lacquer which adheres well to the wood, is resistant to
water and acetone and forms a film which does not lose elasticity with age.
The conventional standard codings (nitroglaze, oil-based varnishes and paints)
are not suitable for this purpose since the films produced by these coatings
are destroyed by acetone. The given requirements are satisfied by a coat-
ing with the following composition: VIAM-B-3 resin (100 wt. %), kerosene
based Twitchell reagent (17 wt.%),solvent (3 wt.%) and plasticizer (10 wt.%).

Before application of the lacquer, the surface of the model is carefully
filled and sanded, The filler is made of fine sawdust and VIAM-B-3 resin.
If there are o0il spots on the surface, they must be removed with a rag soaked
in gasoline or acetone. The lacquer is prepared immediately before use.
The solvent, Twitchell reagent and plasticizer are added to the resin one
after the other. The lacquer is mixed after adding each component. The
finished lacquer has a liquid consistency and is applied with the grain using
a soft brush, The first coat is forced into the wood by strong pressure on
the brush and is followed by three or four coats which are applied at inter-
vals of 6-8 hours. Before application of the third and fourth layers, 3-5% /119
lamp black is added to the lacquer to give the coating a uniform black color,
The lacquer is used at a rate of 70-90 g/m?.

A paraffin model may be tested by this method without first coloring

the surface. However, in this case the results of the tests are less dis-
tinct (especially on photographs) because of the lack of contrast between
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the color of the indicator coating and the color of the model surface.
Therefore the surface of a paraffin model should be blackened 2-3 days before
the beginning of tests using the following composition: 23% carbon black, 7%
beeswax and 70% gasoline, The preparation is abundantly applied to the
paraffin surface of the model and rubbed in with a rag until the paraffin is
uniformly black in color, The surface is then dried for several hours and
polished with a soft rag. :

The indicator solution is prepared immediately before the beginning of
tests--7 g of biacetyl of hydroquinone per 100 cc of commerical acetone. To
prevent clogging of the atomizer during work, the solution should be filtered
before use, The solution is used at the rate of about 100 cc per 1 m? of
surface to be coated,

The surface of a model suspended above water must be washed with soap,
scrubbed with a brush and wiped dry, When a wooden model is tested, the
surface is coated with a thin layer of wax polish which is a 10% solution of ;
beeswax in gasoline. A soft brush is used for applying the polish to the L
surface of the model which is then polished with a clean cloth. The model k
is studded with indicator dowel pegs having conical heads (the cones aré
2-2,5 mm in diameter and 1.5-2 mm high) which make it easier to identify the
boundaries of the laminar section in the boundary layer.

An ordinary paint sprayer is used for applying the indicator coating sol- /120
ution to the surface of the model, In applying the coating, the spray nozzle
is moved uniformly at a distance of 60-70 cm from the surface of the model.
Nearly dry crystals of biacetyl hydroquinone ‘are deposited on the surface of
the model, forming a whitish film. For experimental purposes, it is extreme-
ly important to produce a uniform biacetyl hydroquinone coating on the
surface of the model. After application, the acetone is allowed to evaporate
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for 2-3 minutes., The model is then carefully lowered into the water and
towed. When the model is tested at a velocity of less than 1 m/sec, towing
begins immediately after the model is secured, and at velocities of more than
1 m/sec, the model is held in the water long enough so that the total length
of time in the water is equal to the time for a model being towed at a
velocity of 1 m/sec. After towing, the model is raised out of the water and
dried with an ordinary foehn dryer. Remaining on the dried surface is a
white residue of indicator coating intersected by black cones (Fig. 1). The
nuclei for these cones are the dowels or large crystals of indicator coating
which act as centers of turbulent disturbances. It is recommended that a
natural sponge be used for rubbing off large crystals of the chemical indi-
cator coating to prevent distortion of the streamline flow before the model
is lowered into the water.

The region of the laminar section terminates with the part of the
surface on which the black cones produced by the dowels blend with the general
background of the surface. If the coating is applied too thickly or in a
non-uniform layer, the white sections also remain in zones of transition and
turbulent flow which are determined in these cases by the absence of cones

behind the dowels. An indicator coating may also be used for highly accurate /121

determination of wave profile.

The chemical coating method may be used for model basin tests of both
trolley and gravity type models of the surface vessels and submarines. By
way of example, Figures 2-3 show the results of tests on determining the
laminar section in the boundary layer of a dirigible model tested in the
underwater position at velocities of 1 and 4 m/sec respectively (the model
was 1 meter long).
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INVESTIGATION OF A VELOCITY PICKUP FOR MEASUREMENTS IN A
WATER FLOW

A. V. Bugayenko and V, M. Shakalo

ABSTRACT:; The authors consider two processes of electrical
conductivity in a fluid where the amplitude of the electric
current depends on flow velocity from the standpoint of

using this velocity for measurement. Experimental measure-
ments are described. It is shown that electrical conductivity
may be used for measuring flow conditions.

The electrical conductivity of dissociating liquids depends upon flow /122
velocity [4]. This circumstance may be utilized for measuring the velocity
and conditions of fluid flow. However, flow velocity may have various effects
on the electrical conductivity of a fluid. The current flowing through an
electrolyte is determined by three different processes in the electrolyte:
the transfer of ions from within the solution to the surface of the electrode,
electrochemical reaction and removal of the reaction product. The amplitude
of the current depends chiefly on the rate of the slowest process.

When using a system of electrolyte and inert electrodes which provide
a current due to the reaction rate, a relationship between current and flow
rate may be derived on the basis of the reversibility of the phenomenon of
electroosmosis [3]. In this case, as the electrolyte moves, opposing charges
are induced on the electrodes which reduce the voltage by the quantity

. 2001
E )

where r is the radius of the circular electrodes; p is the charge density in
the double layer; « is specific electrical conductivity; Lis the distance
between electrodes; U is the rate of laminar flow.

The rate of flow may also be determined by measuring the analogous flow

potential in capillaries [2]. 1In the case of potential difference between the
electrodes, the current density is expressed as

i— kce—aF(z.u—y E) (2)
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where k, o and vy are constants, c is the concentration of ions discharging at
the electrodes; F is the Faraday constant.

Current in the electrolyte appears most frequently as the result of ion
transfer which is due to three parallel processes: diffusion, convection and
migration, The current density due to diffusion and migration is determined
from the expression

f o Kz (2 ok a) cp iz
f= d Dexp,  gier — D] :

(3)

where D is the coefficient of diffusion for cations or anions, respectively,
(assuming a binary electrolyte); cp is the concentration of ions in the sol-

z,.are the cation and anion charges; d is the distance between elec-

ution; z
N S

trodes; k is a coefficient of proportionality which depends on the shape of the

electrodes,

If the gradient of concentration at the cathode is higher than at the
anode, the cofactor in brackets in formula (3) becomes 1.

During electrolyte motion, the convection current density is

= PPzl 2) e,

& , (4)

where 8§ is the thickness of the diffusion layer in which the concentration

changes from the value o in the solution to the value ¢ at the surface of

the electrode, which is usually equal to 0 for the case of slow transfer,

The thickness of the diffusion layer depends on velocity and fluid flow
conditions and differs for various electrode surfaces [1]. If flow measure-
ment is done with electrodes in the form of large plates with surface area S
located along the flow at a single distance x in an arbitrary coordinate
system, then for laminar flow conditions

o=a(F1 VY

v (5)

where v is the coefficient of kinematic viscosity, and the convection current
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through the electrolyte is

) (6)

For a plate of length 7 and width b, we have

1 1 1

]...

I, =Fz (2, - z) coUTv D Fu?. 7

ks

When plates of smaller dimensions are used, the diffusion layer is so
thin that the electrochemical reaction becomes the current-determining process.
Relationship (2) will correspond to the current-voltage characteristics. An /124
increase in the voltage across the electrodes leads to an increase in E and
consequently to a reduction in current.

To check the hypothesis on
current reduction with an in-
Tb crease in flow velocity and to
. determine the effect of relation-
Iﬁ ships (2) and (4) on the current
\J in the electrolyte, a special
& device (Fig. 1) was developed
and installed in the flume at
M"“QE)‘” [ the Institute of Hydromechanics

-1, of the Academy of Sciences of
C}~~—oa as e the Ukrainian SSR for holding
— L (E) m".:q,a two electrodes in a stream of
v C);ﬁ_wob bo P tap water with controllable
J ““Jﬁ:m flow velocity. The electrodes
L were designed so that the con-
ducting surfaces could be com-
Fig. 1. Electrical Diagram for the pletely immersed in the water.
Installation, The seat of emf for the system
was a sectional storage battery.
The voltage was regulated by
changing the number of battery
cells. A pickup made by shearing off two insulated wires 0.8 mm in diameter
located at a distance of 2 mm from each other was set with the shear surfaces
(electrodes) parallel to the flow (Figure la). The ratio of the current
through the moving electrolyte to that through a still electrolyte I/I_ de-
creased with an increase in the rate of flow both for the case where ~the
electrodes were set parallel to the flow and where they were set perpendicular

cle o
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to the flow (Figure 1c¢). In the latter case, there was a reduction in the
slope of the current-voltage characteristics. In the case of electrodes made
in the form of small cylinders 1.5 mm in height and 0.8 mm in diameter arrang-
ed as shown in Figure 1b, a rise in current was observed with an increase in
velocity and at a voltage of 2v . At velocities in the range from 0.4 to

1.5 m/sec, the relationships are linear with the slope of the curve reaching

41 pa per m/sec. (A rise in voltage in this case leads to a reduction
" in the slope of the curve (Figure 2). When U > 1.5 m/sec there-is a notice-
ably sharp reduction in current due to cavitation near the electrodes. This
phenomenon may be utilized for determining the beginning of flow cavitation.
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Fig. 2. Curves for Current Ratio as a Function of Flow Rate for Various
Electrode Designs and Voltages: 1, U= 2 y (Fig. 1c); 2, U=12  (Fig. lc};
3, U=12 v (Fig., 1b); 4, U =14 v (Fig. la); 5, U =12 v (Fig. la).

When we compare expressions (2) and (3) for the case of cathodic con-
centration overvoltage, we come to the conclusion that the effect which temp-
erature and constants have on measurement accuracy in a fluid which is flowing
non-uniformly may be reduced to a minimum only for convection characteristics.
The exact velocity is determined from dependence on the dimensionless quantity
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T = Ton

oR

For laminar flow, the thickness of the diffusion layer is related to
the thickness of the boundary layer 60 by the relationship [1]

8= O,G(T);— 8- (8)

Hence the thickness of the boundary layer may be determined from the
amplitude of the convection current. If we take account of the fact that

3

o 7Pt TQ

S U (9)

for a turbulent boundary layer, where Pr is the Prandtl diffusion number which
is equal to 103 for water, and

-.)/k_i— == 4,1 lg (k, RC) -k 1,7, (10)

then the point of transition of the boundary layer from laminar to turbulent
may be determined from the transition of the convection current relationship
from a velocity with the power of 1/2 to velocity with a power of 1. For
practical purposes, two plate electrodes must be cemented at the point to be
studied on a non-conducting model for determining &, or a series of electrode
pairs must be used for determining the point of transition and measuring flow
conditions,
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EFFICIENCY OF A SCREW TYPE GAS-HYDROJET VESSEL

Yu. G. Mokeyev and I. M. Chernyy

ABSTRACT: The authors describe various modifications for
putting together a screw type gas-hydrojet installation
and give a hydrodynamic analysis of a staged system from
the standpoint of its efficiency and optimum distribution
of the load between the stages for various forward velo-
cities of the vehicle.

As is known, the thrust of a gas-hydrojet increases with the forward
velocity just as in a ramjet engine. For all practical purposes, the thrust
is low under starting conditions. For this reason, a vessel equipped with a
gas-hydrojet engine will have unsatisfactory acceleration characteristics.

A rational installation is a combined vehicle with screw and gas-hydro-
jets which have mutually opposing characteristics in the qualitative sense.
There are two possible modifications for combining screw and gas-hydrojets:
with the propulsion units arranged in parallel or in stages (Figure 1).

These modifications have their own advantages and disadvantages, particularly
in the hydrodynamic sense. The staged combination is preferable for greater
compactness, and also for the fact that the operation of the screw provides
for considerable thrust by the gas-hydrojet even at low forward velocities
since the pressure in the chamber p. may reach values close to that required.

However, in both cases (all other things being equal) the question of the pro-
pulsive coefficient for the installations is not clear and requires appropri-
ate analysis. This problem is rather complex in the case of real propulsion
units.

Fig. 1. Design Modifications for Combining a Screw and Gas-Hydrojet.

/127
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In the general case, to analyze and compare the efficiency of various
combinations, we first consider three modifications of systems consisting of
ideal propulsion units, i.e. active Froude discs:

a) First modification--two propulsion units acting in parallel with
thrusts P1 and P2 and hydraulic cross-sections Fl and F2;

b) the two propulsion units replaced by a single unit which develops
an over-all thrust P = P1 + P2 with over-all hydraulic cross-section F = F1 +
+ FZ;
c) two propulsion units which develop an over-all thrust P arranged in
series, the hydraulic cross-section being equal to the cross-section of the

larger engine, i.e. F1 = F; P = P1 + P2

At first glance, the first two modifications appear to be equivalent, /128
but this is only true when Pl/Fl = P2/F2 or 04 = 0,. Solution of the problem
of analyzing the efficiency of installations has been fairly simple since
identical propulsion units (P1 = P2; F1 = F2) are usually installed on ves-
sels in practice. This problem is complicated for combination installations

since the design values of 9y and o, may be considerably different,

Let us proceed with the analysis of the efficiency of our given modifi-
cations for the assumed conditions. In the case of parallel operation of the
propulsion units, the propulsive coefficient of the combination is determined

from the expression
Pl%-l
5 MmN,
P2 ]. ]_

0N+ 1']21\«’2 _ Py + PQ)”D .

1]5(1) P

TN AN, T T JPo PN P (D
R CY Pa
<751.1' 75,-,2> p,
where

. 2 2P,

R e T U 5.

h Vido #1717 oF
(2)

The situation is analogous for n, and Ty

In addition
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0y Py Fy

o Py Ry (3)
Let us use the notation
h%T = 7-';;%7:; e (4)
Then we get from equations (3) and (4) /129
‘;1 :ll _‘P(’J (5)

Substituting equations (2) and (5) in expression (1), we get the follow-

ing expression for the propulsive coefficient of the first type of propulsion
system

A U
2(021“"¢'AQ

n’i_n) e .0 -(-P — o -nr-- :T;-._ (6)
—611 - @ A Vo) d- RV -0
For the second modification,
2
’]_(,5) == - - LT
LA R R
where
w4 }) P
0" == it P G -+ 0, (1 — o).
5 Q(Fy+ Fy) o (7
where
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In proceeding to analysis of the third modification, we must make the
following stipulation. In the case of two active discs arranged in series
and developing thrusts Pl and P2, the area of the second propulsion unit F*2

for a predetermined value of F. may not be arbitrarily assumed since it is

1

necessary to satisfy the condition of a constant mass flowing through cross-
sections Fl and F*z. Then

L 2w g

Foee gy, Ho (9)
where

w i w,, 1 — 1
a, = —1_?‘ = 1/—1 -+ G- - I; Ay == ': - Gz'*;{)“cﬁ'—‘"'{“"
tga (10)

(here and in the following discussion waj is the induced velocity of the j-th

stage, W is the induced velocity of the propulsion unit as a whole).

For the case considered by V. M., Lavrent'yev [2], the propulsive co-
efficient is always lower than for a single-stage propulsion unit with identi-
cal parameters (i.e, the area Fl and the thrust P1 + Pz).

With a transition to the two-stage system, both propulsion units are
ordinarily enclosed in the water guide channel. In this case, the area F2 /130

may not satisfy condition (9), in particular, it may be taken as equal to
Fl' The outlet cross-section for the flow channel in the given modification
is defined by the condition

F —p tta . ,_ % _ 1 (11)
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The following formula may be used for the propulsive coefficient of an
ideal two-stage system with a water flow channel:

M=~ T o
A PECANCE

T-{- 1 (12)

where
(13)

The load factor for a two-stage propulsion unit may be expressed in
terms of the load factors for each stage:

Py P, Fq , 11—
N S R e (14)
5 Fo
Substituting equations (13) and (14) in formula (12), we get
1 =z !
2 7 1 R S
e Wy (15)

Equations (6), (8) and (15) may be used for comparing the efficiency of
the given modifications of parallel and series arrangement of propulsion units
for predetermined distribution of thrusts P_. and P2 and hydraulic cross-

1
sections Fl and F,. For this purpose, curves of n = f(ol) were plotted for a
fixed value of o, = 0.2 and three values of ¢ (Figure 2). According to Fig.

2, for identical initial data, the propulsive coefficient of the installation
in the second modification is somewhat greater than the value of that for the
installation made according to the first modification. Comparison of the
efficiency of the first modificatior and the two-stage system is easily fol-

lowed on Figure 3 where the values of nZSt/ni(a) = F(ol/02) are plotted for

0, = 0.2 and three values of ¢. In the case of the two stage system,
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nzst/n(a) may be greater than or less than 1 depending upon the relationship

between ¢ and 01/02. Typically, the propulsive coefficient of an ideal two-

stage system reaches higher values with an increase in the parameters ¢ and
oy than in the case of the first modification of the system, which agrees /132

satisfactorily with formula (16). The values of oy and ¢ may be analogously

analyzed.
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Fig. 2. Curves for Efficiency as a Function of the Ratio o]/o2 at Various

Values of ¢ for the Three Modifications of Combining Propulsion Units: a,
First Modification: b, Second Modification; ¢, Third modification (1, ¢ = 0.2,

2, ¢ =0.5, 3, ¢ =0.8).

If we remain within the framework of the theory of an ideal propulsion
unit, in particular if we operate with the concept of an ideal fluid, we can-
not evaluate the other factors which limit the arbitrary combination of para-
meters in a gas-hydrojet-screw system., The existing theory of an ideal
cavitating screw [1] limits the over-all load factor at a given forward
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velocity when the continuity of the flow is interrupted at the inlet section
of the screw (cavitation), which inevitably takes place in a real fluid.

The limiting value Or at which

cavitation takes place is determined
by the formula

o= 411 + %) - 1105,
Fig. 3. Curves for the Efficiency
Ratio of Various Combination Pro- (16)
pulsion Systems as a Function of
the Ratio 01/02: 1, ¢ = 0.8; 2,
¢ =0.5 3, ¢=0.2. The rate of flow beneath the screw
which is reached in this case is

ey 0V 1,
wcr) (17)

P TP

where %~ is the cavitation number.

St
2

The necessity of accounting for this condition limits the possible
values of the ratio Pl/Pg in a staged gas-hydrojet-screw installation where

a permissible propulsive coefficient is maintained. Let us analyze the limit-
ing values of Pl/Pg and the propulsive coefficient of the installation for

various values of « and other corresponding conditions,

The propulsive coefficient of an idealized gas-hydrojet may be represent-
ed in the form [2]

Wi=N = % 7 5T " "5 (18)
P - ) i
where 6 is the degree of air compression in the compressor,
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o is the load factor of the gas-hydrojet,

o = Pg/mv = waz/v;

H is the immersion of the screw axis; k is the adiabatic exponent.
Curves are given in [2] of the function n = f(om) for a number of
i
values of « at a fixed value of yH/PO = 0.2. Using these curves, we can find
a range of values of % which are close to the optimum for a gas-hydrojet

engine. Let us find the relationship between the quantities Or and S for
a gas-hydrojet-screw installation of staged type.

Obviously, the total thrust of the staged propulsion unit is

P =P P Q/--lasi ((:i(‘1 ) (19)

or

where Fl and vS are the inlet cross-section and the flow rate beneath the

SCrew.

The maximum value of Oe will be reached with fulfillment of condition

(17):
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%cerPQLp;ﬂ/L¥a:_l+0)
(20)

From this expression, knowing « and taking account of equation (20), we

2
find o, = 2P_/pF.,Vv for a number of o . Then
1 1 1 m

p-g o, 2o, o, Viix

The maximum values of ratios Pl/pg for a number of k are given in Figure

4. As this figure shows, there is a considerable reduction in the fraction of
the thrust attributable to the screw as the forward velocity of the vessel
increases for a given value of o A further increase in the ratio pl/Pg in-

volves an appreciable reduction in the efficiency of the gas-hydrojet stage.
The practicable values of the propulsive coefficient calculated from formula
(1) for a gas-hydrojet-screw installation of the stage type are shown in
Figure 5 for the conditions given above (the broken curve shows the propulsive
coefficient for an ideal engine calculated from formula (16) for Oe(cr)’

There is little change in the maximum practicable values of the efficiency in
the given range of variation in parameters « Pl/Pg and consequently Oe(cr)

This confirms the design feasibility of a staged gas-hydrojet-screw system
within the framework of the given limitations (subcavitation conditions).

The problem of optimum design of a real installation reduces to analyz-
ing a number of variations with regard to the favorable shape for the flow

section, internal and blade losses and the maximum feasible values of ¢ and
m

the ratio Pl/Pg'

141

/134



08} -~ -

Fig. 5. Curves for Efficiency of
Gas-Hydrojet-Screw Installations

Fig. 4. Curves for P]/Pg as a Function as a Function of k: 1, P]/Pg =
of o at Various Values of «: 1, k = =2.0; 2, P]/Pg = 1.5; 3, P]/Pg =
= 1.0, 0((;r=2'3; 2”<=0'5’0cr= = 1.0; 4, P]/P = 0.5.
= 1.02; 3, x = 0.3, o__ = 0.6k; b, ’
K'=O.2,0' =O-L}; 59K=O‘]’O =

cr cr
=0.2.
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ON SELECTING THE TYPE OF ENGINE FOR HIGH SPEED SUBMARINES

V. A. Grigor'yev

ABSTRACT: The article contains a brief survey of non-
Soviet research on water-steam rocket engines. Problems
of the internal ballistics of the water-steam engine are
formulated in the general case.

Extensive research has recently been undertaken abroad on reducing the /135
drag and increasing the velocity of underwater vehicles, which involves solv-
ing the problem of selecting a type of engine. The screw type of propulsion
unit is preferable for velocities of less than 90 knots. Coaxial screws and
screws in nozzles have shown satisfactory results. The hydrojet is considered
as the next step in the design of compact propulsion units.

Considerable attention is being given to the feasibility of using jet
engines on submarines., Two types of jet engines are used: those which operate
without using the surrounding water to produce thrust, and hydrojet engines
which operate with the use of the surrounding water.

A great disadvantage of jet engines which are independent of the sur-
rounding water is their extremely low thrust efficiency (n q= 0.05 - 0.1).
Hydrojet engines have a higher thrust efficiency (n = 0.7" 0.8) as compared
with those which are independent of the surroundingn%edium.

An interesting problem is the motion of underwater bodies in a cavity.
Under conditions of completely developed cavitation, an underwater vehicle
should move within a cavity which closes behind the vehicle; the vehicle would
be controlled and stabilized either by foils which extend beyond the limits of
the cavity or by jet rudders. Developed cavitation conditions could be pro-
duced either artificially or by reaching high velocities (v = 100 knots),
which requires tremendous expenditures of energy. A jet engine is the only
power plant which could be considered for motion of a vehicle within a stable
cavity.

Ordinary water heated to the saturation state may be used to produce
reactive thrust by escape of a jet, The operating principle of an engine of /136
this type is as follows. A tank is filled with boiling water at saturation

pressure P1 and corresponding temperature t, or with cold water which is then

heated. The boiling water escapes through a nozzle under saturation pressure.
The drop in pressure during escape of the water causes violent formation of
steam in the jet nozzle. In this case there is a sharp increase in the volume
of the steam, and the hot water escaping through the nozzle takes on properties
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similar to those of an expanding gas. The water loses heat of vaporization r,
and thus the temperature of the water drops together with the pressure so that
the water is cooled at the nozzle outlet to the final state P2, t2. During
escape of the water, the pressure in the tank also drops which causes partial
leveling of the water and a corresponding reduction in temperature. Several
types of hot-water rockets have been patented in West Germany, but they have
not been used because of imperfections. [1] gives the history of development
of water-steam rockets with a theoretical investigation of the problem of
using water rockets as boosters during vertical takeoff,

The water-steam engine has a comparatively low specific thrust (40-60
kg+product sec/kg), but this advantage is compensated by the low cost of a
unit of thrust. It should be pointed out that studies of water-steam engines
are in the engineering stage. Problems of the hydrodynamics of escape of the
water-steam mixture, reduction in the specific thrust with a pressure drop in
the tank, the inclination of boiling water to delay the boiling process during
expansion in the nozzle and in the case of a phase displacement, etc. have not
been sufficiently studied since they have been chiefly solved experimentally.
The drop in pressure in the tank as the water escapes Pl(r) and the reduction

in temperature tl(T) cause a drop in thrust (Fig. 1). It has been proposed

that the water be heated under pressure to balance the specific thrust of the
engine. The Fairchild Company (United States) has proposed burning a solid
fuel inside the tank to compensate for the heat of the steam formation [2].
Since there have been no data on two-phase discharge, heat transfer during
passage of gases through the water and heating, the operating conditions of
the engine have been experimentally determined. The effect of condensation
discontinuity on its position and the efficiency of the nozzle have remained
unexplained.

2 - - - -
2 kg/em , i l
2. . S
L.~ T =T
8\/"' . “.7.' N_i’—“h—:" '\..-" Lo e =t ] /;‘"
NS
"
N
T .
0'- J 8 27 1 sec Fig. 2.
Fig. 1. The most complex problem is determining

the state of the moving steam-water mixture.

The process of escape of the heated water is
characterized by the fundamental equations of hydrodynamics and energy flow:
equations of motion, equation of continuity, equation of energy and equation
of state.
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Basically, there is no difference between the molecular nature of adia-
batic steam formation and the supply of heat through a wall. The difference
is that the adiabatic steam formation process is due to the internal heat of
the fluid liberated with the drop in pressure. In long nozzles, the steam /137

may be formed with simultaneous nearly thermodynamic equilibrium of the steam-
liquid mixture. The degree of completion of the process of steam formation
during escape of boiling water may be characterized by the ratio of the temp-
erature at the outlet to the boiling temperature at the final pressure tz/tb.

The vapor formed on the surface of the jet, as it moves along the walls
of the nozzle, leads to detachment of the jet from the wall. As a result,
the cross-section of the liquid decreases with respect to the length of the
nozzle. The flow in the nozzle 1s divided into a liquid film on the wall (1),
a vapor ring (2) and a core of heated water (3) (Figure 2).

As the heated water escapes, it is necessary to account for the non-
uniformity in phase distribution with respect to the cross-section of the
nozzle, the difference in relative velocities of film, vapor and water core,
the change in steam concentration x, the pressure gradient with respect to the
length of the nozzle dP/dl, the adiabatic exponent k(T,x), the Reynolds
number, the area Ff/F occupied by the film, the slip coefficient of the phases

v = ¢,/C,. and the phase temperature difference AT. Thus in order to close
1/ 7f p p

the given system of equations, it is necessary to add an equation for the
change in volumetric concentration of the phases, an equation of phase velo-
city and an equation of heat interaction between phases,

As has been pointed out, the tank is filled with hot water or with water
which has been heated. Even in the most successful experiments, two hours
were required for starting the engine. The use of hydrojet fuel (lithium,
potassium, sodium, etc.) has made it possible to do away with the boiler and
heater. Work along these lines is being done by the Aerojet General Company
in the United States. Successful research with hydrojet fuels has been car-
ried out in Italy [3,4]. The chemical reagent produced by reaction with the /138
water in the rocket tank raises its temperature to 300°C in 0.3 sec. The
use of hydrojet fuels not only eliminates the need for boilers and heaters,
but raises the specific thrust to 360 dkN-sec/dkN. Investigations of the
theoretical fundamentals of the internal ballistics of hydrochemical jet
engines have not been completed., Particular attention is being given to ex-
periments and searches for effective high-calorie hydrojet fuels.

By using the equations of internal ballistics--the equation of energy
transformation, the equation of hydrojet fuel combustion, and the equation of
motion of the vehicle--we may explain the relationships between the components
of internal ballistics (pressure P, temperature t, volume V, coefficient of
mass mixture ml/m2 in the mixing chamber, heat-transfer coefficient, etc.) and

external ballistics (velocity v, length of the path L, time of motion 1) of
the vehicle as a whole,
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ON EVALUATING THE TECHNICAL AND ECONOMIC EINDECES OF ROCKET«<
HYDRAULIC TYPE HYDROJET ENGINES

V. A. Grigor'yev

ABSTRACT: The calculated characteristics of various
fuels are compared. [t is noted that the use of metal
fuels has made it possible to increase the specific
thrust of hydrojet engines by 30-40%. At the same
time, the specific fuel consumption for a hydrojet
engine is 40-50% less than that for a ramjet engine.

The use of direct reaction engines makes it possible to increase the /139
velocity of a vehicle in media with different densities (water, air). In
analyzing the power plant of the heat engine and propulsion unit, principal
attention should be given to evaluating this power plant as a propulsion unit.

The indices of the power plant are determined in the absence of drag;
discharge of the combustion products is characterized by constant velocity v_

and constant thrust P. The principal criteria in comparing jet engines are
the specific thrust p, the over-all efficiency nO and the specific fuel con-

sumption Csp

Table 1 summarizes the results of comparative calculations which may be
used for first-approximation evaluation of p for several types of fuels under
conditions of an ideal cycle (total combustion, absence of dissociation, the
process of expansion and exhaust conforming to isentropic law). By using
metal as a fuell, the specific thrust may be increased by 30-40% as compared
with liquid fuels.

The thermal effect of the reaction of metal oxidation determined by Hess
law is equal to the sum of the heats of formation of the final products of the
reaction minus the sum of the heats of formation of the initial substances:

) 3y NS (- gy -— I R (O -
l.w]forrrgl‘}\) ' jform e v form et (1)

G- AH (H) - A Yy -- D ELOE =0,
form * form

1The idea of using metal fuels in jet engines was first proposed by F. A.

g J prop y
Tsander in a lecture given in December 1923 at a meeting of a section of the
Moscow Society of Astronomy Amateurs ("Tekhnika < zhizn'", No. 13, 1924).
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where AHform is the heat of formation of the substance; x is the valence of

the metal; y is the number of excess moles of water; n = 2 corresponds to an
odd metal valence; n = 1 corresponds to an even metal valence.

Let us note that dissociation is observed with retardation of the chemi- ,143
cal reaction when T > 2,000°K. As the flow expands, dissociation is followed
by recombination, association of the molecules, i.e. the appearance of paired

structured molecules, and then condensation. All this distinguishes the real
grocess from the ideal process. Losses in the real cycle are characterized
y the internal efficiency:

n (2)

in nthnreac mech'mi x

In this paper, only the thermal efficiency Nih is taken into account in

calculating the ideal engine.
The heat liberated after the metal fuel mass m, is reacted with the ox-

1

idizer (intake water) mass m_, may be transferred to an additional mass of in-

2
take water ms, which raises the thermal efficiency of the cycle. The increase
in n is explained by the increase in the specific vapor concentration in the

th
reaction products, the reduction in molecular heat ucp, and the consequent

reduction in the adiabatic exponent k = ucp/ucv.

The results of calculations of the parameters of jet engines which use
products of the reaction Hg + yHZO as the working medium are shown in Figures

1 and 2 for various values of the coefficient of excess intake water k2 = m3/

/m2.

The hydrojet thrust for the theoretical operating state of a nozzle with
regard to the stoichiometric coefficient k1 = mz/m1 will be

P i - Ry Rk (Ve — ) F Ul (3)
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Fig. 1. Curves for the Thermodynamic Characteristics of a Hydrojet Engine
as a Function of the Coefficient of Excess Intake Water k2 (50:1).
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Fig. 2. Curves for Specific Thrust, Specific Fuel Consumption and Efficiency
of a Hydrojet Engine as Functions of the Coefficient of Excess Intake Water

k2 (50:1).

In analyzing a hydrojet engine, it is preferable to consider not only /142
the specific thrust of the engine, i.e. the ratio of the thrust to the con-
sumption of working mass per second Py’ but also the ratio of the thrust to

the combustible mass and to the fuel mass p.:

pcomb’

] E > > - - o=y e
Comh = 1!;’7 [(] - 1’\’1 ‘l‘ /Lll‘z) (U:o — v\\, 0 L,U],

(4)
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Thus as the additional mass of intake water increases, the combustible
mass p o increases while the specific thrust of the engine Pyom decreases.

The specific fuel consumption Ce is 2.5 kg/kge+sec at large values of k2, i.e.

this type of engine is economically superior to a ramjet.
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ON CALCULATING PRESSURE ENERGY DIFFUSION IN A FLOW WITH SHEAR

Ye. V. Yeremenko

ABSTRACT: An approximating expression is found for cal-
culating pressure energy diffusion with regard to the
finiteness of space.

The pulsation energy balance equation is utilized in the semi-empirical /143

theory of turbulence proposed by A. N. Kolmogorov [3] which was developed
and used by other authors for calculating flows with shear., The diffusion

term of this equation

3
2

3
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includes transfer of kinetic energy of turbulence E under the effect of
viscosity (first term of the expression), turbulent diffusion of kinetic
energy (second term of the expression) and pressure energy diffusion (third
term of the expression).

Various methods are used by authors in their calculations to account
for the diffusion term. In examining the ground layer of the atmosphere,
A.S.Monin [4] considered only the second term--turbulent diffusion of
kinetic energy--since the remaining terms were vanishingly small. In G. S.
Glushko's paper [1] dealing with calculation of the boundary layer, the
second and third terms of the expression are considered jointly and approxi-
mated in the form

where v!' is a coefficient of the turbulent viscosity type.

This type of approximation for the diffusion of kinetic energy and the
diffusion of pressure energy is frequently used [8]. However, A. A. Town-
send [6] noted that although both these terms are important for energy /144
transfer from one section of the flow to another, the second term of the
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expression is local while the third is determined by the entire flow as a
whole, and there is not necessarily any direct relationship between them.

Thus, there are sufficient grounds for considering these terims independ-
ently of one another., Pottal [10] isolated terms associated with pulsation
pressure in recording the energy Vvalence by components, and considered the
correlation between pressure and velocity for an infinite region. According
to experimental data given by Laufer [8], pressure energy diffusion in the
greater part of the flow adjacent to the wall has an order identical to that
of kinetic energy diffusion, where the signs of the corresponding terms are
opposite to one another. This shows the significance of pressure energy
diffusion and the difference between this type of diffusion and that of the
kinetic energy of turbulence. We may assume that the derivation of an ap-
proximating expression for pressure energy diffusion will make it possible
to improve the accuracy of computations in semi-empirical theory.

Applying the operation of divergence to Navier-Stokes equations, the
pulsation pressure in an incompressible fluid may be written [10] in the
form

3 3
oU, (r-+r,1t) du, (r + r',1)
—Ap(r.r = — N ¥ g AR A L
P ) Lt 21 ox, ox,
k=1 j=-1
33 o 5y (1)
RN gty , = (uyuy ,
:2,_,‘ .u»J[ 6‘Vxhax1 (’ '}"r ) [) - axh()ft_ (r '}-—f R Z):I...,
]

where U, u are the average and the pulsation velocities, respectively; p is
the instantaneous value of the pulsation pressure.

Expression (1) is a Poisson equation which may be presented in a more

compact form:

%Ap (r, 7 f) = —f(r, 7", 0).
(2)

The solution of equation (2) for infinite space with the use of the
condition at infinity p = 0 gives [7]

o ==
W

AR . S N <’vr{’:_l>_ dw, (3
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where r is the radius vector of the given point in space;

re= l/ ‘) § V(x m)f"{‘!"— (xz _““xéo.)z + ("‘3 - x3;))§;

1=l
A = dE,dz,dz,.

appearing in formula (1), as the /145

We represent the derivative an/axk

Taylor series

au;
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We substitute the value of the function f(r, r', t) in expression (3). We
multiply both members of equation (3) by um(r, t) and differentiate with re-

spect to X Then taking the statistical average of the result and carrying

out summation with respect to m, we get an expression for pressure energy
diffusion in the form of a series:
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In this equation
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where the correlation function

Ry == (u \r -7, D, (1)

However, consideration of an infinite region does not fully correspond
to the real conditions of motion of a flow with shear. The formal result of
accounting for the finiteness of space in formula (5) is to change the limits
of integration and the Green's functions.

In actuality, the solution of equation (2) for a half-space may be
written in the form [9]

14 1 1 1 ;
S e — 4 I R AL
sen =g\ e (i ). (6
w
where
D L R £ N 20 L N U S S

The boundary condition (dp = 0)/(8x3/x3 = 0) is used in derivation of

equation (6). Equation (2) may be solved not only for a region bounded by
a single impermeable surface, but for two such surfaces (pressurized motion
of a plane/parallel flow) or for a free surface. The boundary condition on
a free surface is p = 0 (x3 = h). Let us select points outside the region

which will be the mirror reflection of the given point (x XSO) with

X
10° 720’
respect to an impermeable bottom and the free surface. With multiple re-
flection of these points and application of the Green's formula

s7 7 ' (7)
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to the given region (for points lying outside the given region, the left-
hand member of equation (7) is equal to zero), we add and subtract equation

(7) with expressions for the points outside the region with regard to the
boundary conditions

to give
14 1
2 :_“g G
O 4'1\:/0<X3<hf(, \[)G“,’
(8)
where the Green's function
40
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Hence the general form of expression (4) will not change when the finite-
ness of the region is taken into account, although limitation of the region

of integration in equations (5) modifies these formulas to give 147
g q 1227
A P RV Al ! oR}}
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Since the form of the correlation function is not known beforehand, we
assume that the turbulent characteristics may be expressed in terms of E and

some integral scale L. With regard to expression (10), we find that A should
be a function of E, L and h.
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Let us. consider only plain-parallel flows in the case of smoothly
changing motion where

1 9{pir. )y, (7, ) U, 4+ o, 33
ZX‘“ ok, 'EJ"A aJ AP a*l i (11)

o

Let us limit ourselves to the first term of this series and use con-
siderations of dimensionality for approximation. Taking account of the co-
efficient H(RE introduced by G. S. Glushko [1] for correcting the values

)

of the coefficient of turbulent viscosity v, = GH(RE)L/E in the region

near the wall and taking Afs as proportional to E(ath-b'L), which guarantees

convergence of the series with regard to most of the terms, we get

L opln, Dus (1) _ o L\ oU
e a_aq— =akh b—H g, 7,‘) “(k—;;l“ - (12)

In deriving equation (12), a two-layer flow system was considered and
I. K. Nikitints data [5] were used for calculating

of 1 _ X\ _ 4
U'( h) vdxs

where U, is dynamic velocity. The expression for determining the value of
E is given in [2]. The extent to which equation (12) corresponds to
Laufer's experimental data is shown in the Table.

In expression (12), the coefficients a = 0.13, b = 0.0073, and the
coefficient H(Re) which depends on the Reynolds number for turbulence

Re = L ¥ E/v was calculated from formulas given in [1] where Re0 = 22.0.
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10 546 ~~0960,5 .
20 713 ~1474,2 ?6328 ?8388 44,4
30 674 —575,5 oaso —0.2
40 636 —297,5 N 2660 4007
49 —87.,8 g
60 g —290 —280 43,5
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